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SUMMARY 

Ship-to-ship interactions can induce significant vertical motions, increasing grounding risks. Experimental data on 
this phenomenon remain scarce, so numerical methods could provide an alternative to assess these risks. A numerical 
method based on slender-body theory was implemented by Gourlay (2009), who used a linear superposition of ship-bound 
pressure fields in open water to calculate ship sinkage and trim during ship-to-ship interactions. A Fourier solution of 
these pressure fields was implemented in the computer code SlenderFlow (SF). In this paper, Gourlay’s 
superposition method was implemented using SF and validated with experimental data obtained at Flanders Hydraulics 
(FH). The results showed that SF captures qualitative trends, but its predictions underestimate the peak magnitudes 
of the unsteady sinkages. This discrepancy is attributed to model simplifications, such as the linearization of the hull and 
free-surface boundary conditions, but also the superposition of separate pressure fields is questioned.  

NOMENCLATURE 

𝐴𝐴M Surface area of midship section (m2) 
𝐴𝐴W Waterplane area (m2) 
B Maximum moulded breadth (m) 
𝐵𝐵�(𝑘𝑘) Fourier transform of 𝐵𝐵(𝑥𝑥) (m2) 
𝐵𝐵i Maximum moulded breadth of ship I (m) 
𝐵𝐵(𝑥𝑥) Ship breadth on the waterline at longitudinal position 𝑥𝑥(m) 
𝐹𝐹𝑟𝑟ℎ Depth-based Froude number (-) 
𝐹𝐹𝐹𝐹ℎ,crit1 First critical Froude depth number (-) 
𝐹𝐹𝐹𝐹ℎ,i Depth-based Froude number of ship i (-) 
𝑔𝑔 Gravitational acceleration constant (9.81 m/s2) 
ℎ Water depth (m) 
𝐼𝐼LCF Second moment of waterplane area (m4) 
𝑘𝑘 Dimensional wave number (1/m) 
𝐾𝐾(𝑘𝑘) Kernel function determined by canal bathymetries (-) 
𝐿𝐿 Submerged length of the own ship (m) 
𝐿𝐿PP,i Length between perpendiculars of ship i (m) 
𝑚𝑚 Canal blockage (-) 
𝑝𝑝𝑖𝑖�𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗� Pressure field due to ship i in ship-bound reference system of ship j (N/m2) 
𝑈𝑈 Free stream velocity (m/s) 
𝑈𝑈i Ship speed magnitude of ship i (knots or m/s) 
𝑈𝑈rel Relative speed of target vessel w.r.t. own ship (knots or m/s) 
𝑠𝑠0 Sinkage at midships (m) 
𝑠𝑠 Sinkage (m) 
𝑠𝑠AP Sinkage at the aft perpendicular (m) 
𝑠𝑠FP Sinkage at the fore perpendicular (m) 
𝑠𝑠LCF Sinkage at LCF (m) 
𝑠𝑠peak Peak magnitude of the unsteady sinkage (m) 
𝑠𝑠steady Steady sinkage (m) 
𝑆𝑆′� (𝑘𝑘) Fourier transform of derivative of 𝑆𝑆(𝑥𝑥) (m3/m) 
𝑆𝑆(𝑥𝑥) Hull cross-sectional area at station 𝑥𝑥 (m2) 
𝑆𝑆’(𝑥𝑥) Derivative of hull cross-sectional area at station 𝑥𝑥 (m2/m) 
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𝑡𝑡 Time (s) 
T Ship draft (m) 
Ti Draft of ship i (m) 
𝑤𝑤 Canal width (m) 
𝑥𝑥 Longitudinal coordinate in ship-bound reference system (m) 
𝑋𝑋 Variable of integration (m) 
𝑥𝑥𝑥𝑥����(𝑘𝑘) Fourier transform of (𝑥𝑥 − 𝑥𝑥LCF)𝐵𝐵(𝑥𝑥) (m3) 
𝑥𝑥cc Longitudinal distance between midship sections (m) 
𝑥𝑥i Longitudinal coordinate (in reference system i) (m) 
𝑥𝑥i,LCF Longitudinal coordinate of centre of floatation in reference system of ship i (m) 
𝑦𝑦 Transverse coordinate in ship-bound reference system (m) 
𝑦𝑦cc Transverse distance between symmetry planes (m) 
𝑦𝑦i Transverse coordinate (in reference system i) (m) 
𝑧𝑧 Vertical coordinate in ship-bound reference system(m) 
𝑧𝑧𝑖𝑖 Vertical coordinate (in reference system of ship i) (m) 
𝑍𝑍steady Steady vertical heave force (positive upwards) (N) 
𝑍𝑍(𝑡𝑡) Unsteady vertical heave force (positive upwards) as function of time (N) 
𝑍𝑍total Vertical heave force, sum of steady and unsteady component (N) 

𝜃𝜃LCF Trim about LCF (radians) 
𝜆𝜆 Scale factor (-) 
∇ Moulded volume (m3) 
𝜉𝜉 Stagger distance (-) 
ρ Density of water (kg/m3) 
𝜙𝜙 Disturbance velocity potential (m2/s) 
Ω Cross-section area of the canal (m2) 

Exp Experiment 
FH Flanders Hydraulics 
LCF Longitudinal centre of floatation 
SF SlenderFlow  
UKC Under Keel Clearance (-) 

0 Subscript, indicating the inertial frame of reference2 
own Subscript, indicating the own ship 
tar Subscript, indicating the target ship 

1 INTRODUCTION 

Ships manoeuvring in close proximity generate interaction forces due to overlapping ship-bound pressure fields. With 
increasing ship sizes, the frequency of interaction-related accidents rises, highlighting the relevance of this issue. This 
problem is not new and has been the topic of many publications (see Zhou et al. (2023) and references therein). However, 
the main focus of these investigations lies on the forces acting in the horizontal plane due to the passage of another vessel. 
The specific problem of vertical motions caused by ship interactions has received comparatively little attention (Gourlay, 
2009).  

Eloot et al. (2011) pointed out that squat and trim during ship-to-ship interaction play an important role in the design of 
two-way navigation channels, in which vertical dimensions should be sufficient to account for the additional squat caused 
by ship-to-ship interactions. However, experimental data on this topic remains scarce. Experimental data was reported by 
Dand (1981). It was shown that large changes in trim and sinkage can occur, increasing the grounding risk. Vantorre et al. 
(2002) conducted extensive ship-to-ship interaction tests but did not analyse vertical displacements. 

Numerical models offer an alternative to experimental data. Gourlay (2009) applied slender-body theory to calculate ship 
sinkage and trim during ship interaction using an integral expression from Tuck (1966) to calculate the pressure field of a 
ship in open water. This approach assumes linear superposition of pressure fields but lacked experimental validation. 
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The pressure field calculated by Tuck (1966) involves the direct integration of a singular integral. To overcome this 
singularity, Gourlay (2008) proposed an alternative solution involving a Fourier transform. This Fourier transform solution 
was implemented in the computer code SlenderFlow (SF) (Gourlay, 2008; Ha, 2018). The computer code also incorporates 
the solution to other bathymetries (Gourlay, 2008). With the ship geometry, velocity and bathymetry as input, SF calculates 
the hydrodynamic pressure fields, steady sinkage and trim of a single ship. 

The goal of this paper is to validate the linear superposition method proposed by Gourlay (2009) with data obtained by 
Vantorre et al. (2002). Instead of Tuck’s integral expression of the pressure field in open water, the Fourier-based solutions 
presented by Gourlay (2008) are modified to calculate the pressure field of a passing target ship.  

The paper first presents the slender-body theory of Tuck and his integral solution. The shortcomings of this solution are 
explained, after which the alternative solution using Fourier transforms is presented. Then, the solution of the flow field 
around a ship in a canal of constant width is presented, since validation is performed with model test results obtained in a 
towing tank of constant width. This bathymetry was also included in SF. Subsequently, the superposition method is 
explained. Finally, the numerical results are compared to experimental results. 

2 THEORETICAL METHOD 

2.1 THEORETICAL BACKGROUND OF SLENDERFLOW 

The computer code SlenderFlow calculates the hydrodynamic pressure fields, steady sinkage and trim of a single ship sailing 
in different bathymetries. The code assumes the ship-bound coordinate systems as shown in Figure 1. To explain the 
theoretical background of SF, consider the own ship with ship-bound coordinate system (𝑥𝑥own,𝑦𝑦own, 𝑧𝑧own). This coordinate 
system will be denoted with (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in this section for ease of notation.  

Figure 1 Coordinate systems and notation 

The longitudinal coordinate 𝑥𝑥 is centred at midships (positive towards the stern). The transverse coordinate 𝑦𝑦 is centred on 
the ship’s centreline (positive to starboard) and the vertical coordinate 𝑧𝑧 lies at the undisturbed free surface (positive 
upwards). In this ship-fixed coordinate system, the ship is stationary and is subjected to a steady incoming freestream of 
magnitude 𝑈𝑈, which equals the own ship speed 𝑈𝑈own. 

All solutions implemented in SF were derived from a partial differential equation derived by Tuck (1966). He derived that 
the leading order disturbance velocity potential 𝜙𝜙 should satisfy the linearized shallow-water equation in the outer region 

(1 − 𝐹𝐹𝐹𝐹ℎ2)
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= 0. 
(1) 
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𝐹𝐹𝑟𝑟ℎ is the depth-based Froude number (𝑈𝑈/�𝑔𝑔ℎ), with ℎ the water depth. It is subject to a modified linearised hull boundary 
condition (the inner boundary condition)  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ±
𝑈𝑈
2ℎ

𝑆𝑆′(𝑥𝑥 ) on 𝑦𝑦 = 0±, (2) 

where 𝑆𝑆(𝑥𝑥) is the hull cross-sectional area at station 𝑥𝑥 and 𝑆𝑆’(𝑥𝑥) is the derivative of this section area with respect to 𝑥𝑥. 
According to linear theory the ship is fixed in its rest position when calculating the flow, so the increase of the immersed 
volume due to sinkage is neglected when calculating 𝑆𝑆(𝑥𝑥) in Eq. (2) (Gourlay, 2008).  

Depending on the specific bathymetry, additional boundary conditions are introduced. For open water of constant depth, 
Eq. (1) is subject to the far-field boundary condition  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

→ 0 as 𝑦𝑦 → ±∞. (3) 

In a canal of constant depth h and canal width w, with the ship sailing at the canal centreline, a wall boundary condition at 
the sides of the canal is introduced (Tuck, 1967): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 on 𝑦𝑦 =  ±
𝑤𝑤
2

. (4) 

Other bathymetries require additional details (Gourlay, 2008). 

The velocity potential can be calculated from the elliptic partial differential equation (𝐹𝐹𝑟𝑟ℎ < 1) Eq. (1) by considering the 
boundary conditions. This potential can then be employed to derive the hydrodynamic pressure. This pressure is given from 
the linearized Bernoulli equation as (Gourlay, 2014) 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = −𝜌𝜌𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 . (5) 

Higher-order (quadratic) terms are neglected in the Bernoulli equation, since these are of the same order as other terms 
already neglected in the derivation of the linearized shallow-water equation Eq. (1) and hull boundary condition Eq. (2) 
(Gourlay, 2014).  

Tuck (1966) solved this boundary value problem for the case of a ship sailing in open water by considering the velocity 
potential for a line of moving sources (Gourlay, 2008). The pressure field around this ship moving at a steady velocity 𝑈𝑈 is 
equal to 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = −
𝜌𝜌𝑈𝑈2

2𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ2
�

𝑥𝑥 − 𝑋𝑋
(𝑥𝑥 − 𝑋𝑋)2 + (1 − 𝐹𝐹𝑟𝑟ℎ2)𝑦𝑦2

 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑
𝐿𝐿
2

−𝐿𝐿2

, 
(6) 

In Eq. (6) 𝑋𝑋 represents the variable of integration along the length of the ship. 𝐿𝐿 is the submerged length of the ship and 
equals the distance between the foremost and aftmost point.  

For locations away from the ship’s centreline (𝑦𝑦 ≠ 0), the integrand in Eq. (6) is non-singular and the integral may be 
evaluated using Simpson’s rule (Gourlay, 2014). Additionally, the singularity at 𝑦𝑦 = 0 is integrable except right at the bow or 
stern where 𝑆𝑆’(𝑥𝑥) is discontinuous.  

To address this issue, (Gourlay, 2008) proposed an alternative solution which uses Fourier transforms rather than source 
summations, which was implemented in SF (Ha, 2018). The pressure field surrounding a ship in open water of constant 
depth may be written as 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = −
𝜌𝜌𝑈𝑈2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ2
� 𝑖𝑖 sgn(𝑘𝑘)𝑆𝑆′� (𝑘𝑘)
∞

−∞
𝑒𝑒−

�1−𝐹𝐹𝐹𝐹ℎ
2|𝑘𝑘||𝑦𝑦|

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑. 
(7) 

The real part of Eq. (7) is considered for physical quantities. The Fourier transform of the derivative of the section area 𝑆𝑆′� (𝑘𝑘) 
is calculated directly as (Gourlay, 2014) 

𝑆𝑆′� (𝑘𝑘) = �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

∞

−∞
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑. 

(8) 
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Since this integral is highly oscillatory for large values of |𝑘𝑘|, Filon’s method is employed to evaluate this integral. This Fourier 
transform does not quite tend to zero as |𝑘𝑘| → ∞, due to the discontinuities in 𝑆𝑆’(𝑥𝑥) at the bow and stern. Consequently, 
the singularity at the bow and stern remains in Eq. (7), but the singularity at other locations on the hull (𝑦𝑦 = 0) is lifted, 
allowing the use of Simpson’s rule. 

The expression for the pressure Eq. (7) can be generalized to other bathymetries as 

𝑝𝑝(𝑥𝑥,𝑦𝑦) = −
𝜌𝜌𝑈𝑈2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ2
� 𝑖𝑖 𝐾𝐾(𝑘𝑘)𝑆𝑆′� (𝑘𝑘)
∞

−∞
𝑒𝑒−

�1−𝐹𝐹𝐹𝐹ℎ
2|𝑘𝑘||𝑦𝑦|

𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑑𝑑. 
(9) 

The function 𝐾𝐾(𝑘𝑘) depends on the transverse geometry (Gourlay, 2008). For instance, in open water 

𝐾𝐾(𝑘𝑘) = sgn(𝑘𝑘), (10) 

which can be derived from Eq. (7). In a rectangular canal 

𝐾𝐾(𝑘𝑘) = coth��
𝑤𝑤
2�

�1 − 𝐹𝐹𝐹𝐹ℎ2𝑘𝑘� . 
(11) 

The pressure on the hull 𝑝𝑝(𝑥𝑥, 0) can be used to calculate the vertical heave force 𝑍𝑍 and bow-down trim moment about the 
longitudinal centre of floatation (LCF) 𝑀𝑀LCF to first order (Tuck, 1966). Using the slender-body approximation, these are 
calculated as  

𝑍𝑍 = � 𝑝𝑝(𝑥𝑥, 0)𝐵𝐵(𝑥𝑥)
𝐿𝐿/2

−𝐿𝐿/2
𝑑𝑑𝑑𝑑 = −

𝜌𝜌𝑈𝑈2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ2
� 𝑖𝑖𝑆𝑆′� (𝑘𝑘)𝐵𝐵∗���
+∞

−∞
(𝑘𝑘)𝐾𝐾(𝑘𝑘)𝑑𝑑𝑑𝑑, 

(12) 

𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = � 𝑝𝑝(𝑥𝑥, 0)𝐵𝐵(𝑥𝑥)
𝐿𝐿
2

−𝐿𝐿2

(𝑥𝑥 − 𝑥𝑥𝐿𝐿𝐿𝐿𝐿𝐿)𝑑𝑑𝑑𝑑 = −
𝜌𝜌𝑈𝑈2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ2
� 𝑖𝑖𝑆𝑆′� (𝑘𝑘)𝑥𝑥𝑥𝑥∗�����
+∞

−∞
(𝑘𝑘)𝐾𝐾(𝑘𝑘)𝑑𝑑𝑑𝑑. 

(13) 

𝐵𝐵�(𝑘𝑘) denotes the Fourier transform of 𝐵𝐵(𝑥𝑥). The asterisk denotes the complex conjugate. 𝑥𝑥𝑥𝑥����(𝑘𝑘) is the Fourier transform 
of (𝑥𝑥 − 𝑥𝑥LCF)𝐵𝐵(𝑥𝑥). SlenderFlow includes additional bathymetries, such as a dredged and stepped canal. More details can 
be found in (Gourlay, 2008). 

The upwards vertical force 𝑍𝑍 is related to the sinkage of the LCF 𝑠𝑠LCF. and waterplane area 𝐴𝐴W  through hydrostatic balancing 
via (Gourlay, 2009) 

𝑍𝑍 = −𝜌𝜌𝜌𝜌𝐴𝐴w𝑠𝑠LCF. (14) 

Similarly, the steady bow-down trim 𝜃𝜃LCF(in radians) is related to the bow-down moment through 

𝑀𝑀LCF = 𝜌𝜌𝜌𝜌𝐼𝐼LCF𝜃𝜃LCF, (15) 

𝐼𝐼LCF = � (𝑋𝑋 − 𝑥𝑥LCF)𝐵𝐵(𝑋𝑋)𝑑𝑑𝑑𝑑.
𝐿𝐿/2

−𝐿𝐿/2
 

(16) 

𝑥𝑥LCF is the coordinate of the longitudinal centre of floatation in the ship-bound reference system.

It is clear that a number of assumptions are made when developing the code. Firstly, the slender-body is based on the 
potential flow assumptions, so boundary layer thickening along the hull is absent. This is especially important at model scale, 
where the boundary layer is thicker and more likely to separate, increasing the difference in results between experiments 
and SF results. Additionally, the absence of self-propulsion in SF, might aggravate these effects. 

The water depth is small compared to the ship’s length, so vertical velocities are assumed to be much smaller than horizontal 
flow components. Consequently, the flow is essentially horizontal.  

Finally, both the free-surface and hull boundary conditions are linearized. The linear solution uses only the leading-order 
dynamic free surface boundary conditions, assuming free surface displacements to be small (Gourlay, 2008). Hull-boundary 
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conditions are linearized by assuming that the ship’s beam is much smaller than its length. Neglecting these non-linearities 
are especially important for fuller ship shapes, such as bulk carriers and tankers.  

2.2 SHIP INTERACTION WITH SLENDERFLOW 

The calculation of sinkages due to ship interaction is based on Gourlay (2009). The unsteady sinkage of a ship (called the 
own ship) due to a passing ship (called the target ship) was calculated via linear superposition of the pressure fields attached 
to the own and target ship. Each of these pressure fields is calculated as if the ship were sailing alone in the canal (section 
2.1), so unsteady effects, related to the passing ship, are neglected according to this method.This linear superposition was 
based on Yeung (1978), who found analytically that the dominant heave force and pitch moment were due to linear 
superposition of the pressure fields produced by each ship (Gourlay, 2009). 

The examples studies in this paper consider two ships sailing along parallel trajectories (Figure 1). It was assumed that the 
distance between both ships 𝑦𝑦ccis large compared to each ship’s beam and of similar order to each ship’s length. In this way, 
each ship lies entirely in the far field of the other vessel. A ship-fixed coordinate system is attached to the own ship 
(𝑥𝑥own,𝑦𝑦own, 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜) and the target ship (𝑥𝑥tar,𝑦𝑦tar, 𝑧𝑧tar). The own ship and target ship have a constant forward velocity of 𝑈𝑈own 
and 𝑈𝑈tar respectively. An earth-fixed reference frame is introduced as well (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0). The 𝑦𝑦0-coordinate is chosen such that 
the centreline of the own ship lies on y0 = 0. The centreline of the target vessel lies on 𝑦𝑦0 = 𝑦𝑦cc. The (𝑥𝑥0, 𝑡𝑡) coordinates are 
chosen such that the submerged midships of both ships pass through 𝑥𝑥0  =  0 at time 𝑡𝑡 = 0.  

With the coordinate systems in Figure 1, Gourlay’s (2009) approach is applied. The superposed pressure on the own vessel 
consists of two terms. The first term is the pressure due to the own ship, which is calculated by taking 𝑦𝑦 = 0in Eq.(9). The 
second term is the pressure due to the target ship on the own ship. It is found by expressing the target ship-bound pressure 
field 𝑝𝑝tar(𝑥𝑥tar,𝑦𝑦tar) in the coordinate system (𝑥𝑥own,𝑦𝑦own). For an encounter manoeuvre 𝑥𝑥tar = −𝑥𝑥own + (𝑈𝑈own + 𝑈𝑈tar)𝑡𝑡 =
−𝑥𝑥own + 𝑥𝑥cc. It follows that, if 𝑡𝑡 is negative before the encounter manoeuvre,  𝑥𝑥cc is negative when both ships are
approaching and positive once both ships have passed each other. Similarly, 𝑦𝑦tar =  −𝑦𝑦own + 𝑦𝑦cc, where 𝑦𝑦cc is negative in
Figure 1. This results in the pressure acting on the own ship, due to an encountering target ship, by taking 𝑦𝑦own = 0in the
following expression,

𝑝𝑝tar(𝑥𝑥own,𝑦𝑦own, 𝑡𝑡) = −
𝜌𝜌𝑈𝑈tar2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ,tar
2

� 𝑖𝑖 𝐾𝐾(𝑘𝑘)𝑆𝑆tar′�����(𝑘𝑘)
∞

−∞
𝑒𝑒
−�1−𝐹𝐹𝐹𝐹ℎ,tar

2 |𝑘𝑘||𝑦𝑦cc−𝑦𝑦own|
𝑒𝑒−𝑖𝑖𝑖𝑖�−𝑥𝑥own+𝑥𝑥cc(𝑡𝑡)�𝑑𝑑𝑑𝑑, 

(17) 

where 𝐹𝐹𝐹𝐹ℎ,tar = 𝑈𝑈tar/�𝑔𝑔ℎ. This pressure can be integrated over the own ship to obtain the unsteady sinkage force: 

𝑍𝑍(𝑡𝑡) = � 𝑝𝑝tar(𝑥𝑥, 0, 𝑡𝑡)𝐵𝐵(𝑥𝑥)
𝐿𝐿
2

−𝐿𝐿2

𝑑𝑑𝑑𝑑. 
(18) 

This integration is performed numerically to evaluate the unsteady sinkage term. The unsteady trim moment is found by 
replacing 𝐵𝐵(𝑥𝑥) with (𝑥𝑥 − 𝑥𝑥LCF)𝐵𝐵(𝑥𝑥) in Eq. (18). The total vertical force on the own vessel during the encounter manoeuvre 
is calculated as  

𝑍𝑍total = 𝑍𝑍steady + 𝑍𝑍(𝑡𝑡), (19) 

where Zsteady is calculated with Eq. (12). 

Similarly, the pressure field of a target ship when overtaking a slower own ship becomes  

𝑝𝑝tar(𝑥𝑥own,𝑦𝑦own, 𝑡𝑡) = −
𝜌𝜌𝑈𝑈tar2

4𝜋𝜋ℎ�1 − 𝐹𝐹𝐹𝐹ℎ,tar
2

� 𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠(𝑘𝑘)𝑆𝑆′� (𝑘𝑘)
∞

−∞
𝑒𝑒
−�1−𝐹𝐹𝐹𝐹ℎ,tar

2 |𝑘𝑘||𝑦𝑦own−𝑦𝑦cc|
𝑒𝑒−𝑖𝑖𝑖𝑖�𝑥𝑥own+𝑥𝑥cc(𝑡𝑡)�𝑑𝑑𝑑𝑑, (20) 

where 𝑥𝑥cc = (𝑈𝑈tar − 𝑈𝑈own)𝑡𝑡. Since 𝑡𝑡 is negative before the target ship overtakes the own ship, 𝑥𝑥cc is negative before the 
overtaking manoeuvre and positive once the target ship has passed the own ship.  

With the total vertical force and moment, the total sinkage and trim angle can be calculated again via Eq. (14) and Eq. (15), 
since it was shown through a dynamic motion analysis that changes in sinkage and trim are sufficiently slow for a quasi-
steady method to be employed (Gourlay, 2009).  
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The unsteady interaction phenomenon is simplified considerably with this approach, as proposed by (Gourlay, 2009). In 
essence, the unsteadiness only arises through the fact that the ship-bound coordinate systems are moving in space with 
respect to each other. After all, the interaction is approximated as a superposition of two pressure fields. Each of these ship-
bound pressure fields is calculated as if the ship is sailing alone through a canal. The pressure fields were calculated using a 
linearized Bernoulli equations which neglected the time derivative of the potential. Therefore, the effect of unsteadiness is 
greatly simplified in the current approach. 

3 EXPERIMENTAL DATA 

3.1 EXPERIMENTAL PROGRAM 

The SF results will be compared to a selection of experimental results obtained by Vantorre et al. (2002). They provided a 
summary of the ship-ship test program performed in the Towing Tank for Manoeuvres in Confined Water at FH, as well as a 
description of the test setup and tested parameters. The lines plans of all 4 tested ship models are given in Fig. 3 (from 
Vantorre et al., 2002). 

A selection of experiments was made, which included only three of the 4 tested ship models. The dimensions and drafts of 
these ships are presented in Table 1 at model scale and full scale. The scale factor 𝜆𝜆 equals 75. Ship E (T0E)1 and ship H (T0H) 
are both used as own vessel in the validation. In each test, the own vessel was fitted with a propeller and rudder and each 
test was executed at the model self-propulsion point. T0E is a large tanker, while T0H is a smaller tanker. T0E and ship D 
(C0D) are used as target vessel. No propeller or rudder was fitted to the target ship. C0D is a container ship of similar length 
as T0 E, but with a smaller width. 

Table 1. Dimensions of ship models 

Model scale Full scale (𝜆𝜆=75) 

Ship code T0E T0H C0D T0E T0H C0D 

LPP (m) 3.824 2.211 3.864 286.8 165.8 289.8 

B (m) 0.624 0.296 0.536 46.80 22.20 40.25 

T (m) 0.207 0.178 0.180 15.53 13.35 13.50 

∇ (m3) 0.4029 0.0989 0.2914 169 981 41 706 92 578 

SF requires knowledge on the precise hull geometry. Two offset files are created for each ship (at a specific draft) containing 
the breadth on the waterline at every station 𝐵𝐵(𝑥𝑥) and the submerged cross section at each station 𝑆𝑆(𝑥𝑥) respectively. The 
geometry of the ship models is used to generate the offset files. The section area 𝑆𝑆(𝑥𝑥) and half ship width is given in Figure 
2. 
Both encounters and overtaking scenarios are included in the validation. Only overtaking scenarios where the own ship is 
being overtaken are considered, since these scenarios result in stronger interaction forces compared to the cases where the 
own ship overtakes a target vessel. An overview of tested parameters was provided in Table 2. 

1 D,E,H are the ship codes used by Vantorre et al. (2002). Nowadays, FH uses the codes C0D, T0E and T0H for these ship 
models respectively. These codes are also used in the remainder of the paper. 
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Table 2. Parameters included in the validation study (at model scale). The ship code of the own vessel is given in ycc/Bown column. 

Manoeuvre 𝑈𝑈own(m/s) 𝑈𝑈tar  (m/s) 𝑦𝑦cc/𝐵𝐵i (-) ℎ (m) 

T0E T0H 

Encounter 

Overtaking (𝑈𝑈tar > 𝑈𝑈own) 

0.238 

0.475 

0.475 

0.713 

0.950 

1.2 

1.4 

1.9 

2.8 

2.1 

3.7 

4.6 

5.6 

6.6 

0.228 

0.248 

0.307 

3.2 SINKAGE MEASUREMENTS 

The vertical displacements at four positions (fore/aft; port/starboard) are measured during the model tests. Measurements 
were only taken on the own vessel attached to the main carriage. These measurements are converted to the vertical 
displacements at three locations: at the fore perpendicular 𝑠𝑠FP, at midships 𝑠𝑠0 and at the aft perpendicular 𝑠𝑠AP. 

The measurements corresponding to an encounter and overtaking manoeuvre are shown in Figure 3 and Figure 4 
respectively. Only the forces on the own vessel (T0E) are given. These are plotted against the non-dimensional stagger 
distance calculated as 

𝜉𝜉 =
𝑥𝑥cc

1
2 �𝐿𝐿PP,own + 𝐿𝐿PP,tar�.

(21) 

Figure 2 Submerged cross-section area at each station 𝑺𝑺(𝒙𝒙) (top figure) and half width at the waterline at each 
station 𝑩𝑩(𝒙𝒙)/2 (bottom figure). 𝑺𝑺(𝒙𝒙) and 𝑩𝑩(𝒙𝒙) are inputted in SF. The aft perpendicular lies at x=0. 
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In this expression, 𝑥𝑥ccis the longitudinal distance between midship sections (Figure 1) and LPP refers to the length between 
perpendiculars. Given the definition of 𝑥𝑥cc in section 2.2, 𝜉𝜉 is negative before the passing and positive after. During an 
encounter, the bows of both ships pass at 𝜉𝜉 =-1. The sterns of both ships are aligned when 𝜉𝜉 = 1. When the own ship is 
overtaken, 𝜉𝜉 =-1 when the bow of the target ship passes the stern of the own ship. Conversely, 𝜉𝜉 =1 when the stern of the 
target ship passes the bow of the own ship. 𝜉𝜉 = 0 when the midship sections cross. All model test results are scaled to full 
scale. Scaling is achieved by multiplying the measured sinkage with the scale factor (𝜆𝜆 = 75). 

In contrast with the experiments, SF calculates the sinkage of the LCF 𝑠𝑠LCF and the bow-down trim angle 𝜃𝜃LCF (Eq. (15) and 
Eq. (16) respectively). These values were combined to calculate the sinkages at the three experimental locations: 

𝑠𝑠FP = 𝑠𝑠LCF + �
1
2
𝐿𝐿PP,own + 𝑥𝑥LCF� ⋅ tan (𝜃𝜃LCF) (22) 

𝑠𝑠AP = 𝑠𝑠LCF − �
1
2
𝐿𝐿PP,own − 𝑥𝑥LCF� ⋅ tan (𝜃𝜃LCF) (23) 

𝑠𝑠0 = 𝑠𝑠LCF + 𝑥𝑥LCF ⋅ tan (𝜃𝜃LCF) (24) 

Both 𝑠𝑠LCF and 𝜃𝜃LCF consist of a steady sinkage value caused by the own ship’s movement through the water, and an unsteady 
contribution due to the passing ship.  

4 COMPARISON OF SLENDERFLOW WITH MODEL TESTS 

4.1 METHODOLOGY 

Experimentally obtained trendlines are compared to  SF trendlines in Figure 3 and Figure 4. Three sinkages are investigated: 
𝑠𝑠0, 𝑠𝑠FP and 𝑠𝑠AP. These sinkages consists of two contributions: a steady sinkage, corresponding to a single ship sailing through 
a canal and an unsteady sinkage, corresponding to the passing target ship.  

The performance of SF when calculating steady sinkages was discussed before (Gourlay, 2014). SF tended to underestimate 
the average sinkage and overestimate the bow-down trim when compared to model tests, primarily due to the linearization 
of the free surface (Gourlay, 2008). The overestimation of the bow-down trim corresponds to under-estimating 𝑠𝑠APand over-
estimating 𝑠𝑠FP. However, this observation was not confirmed by Figure 3, since the propulsion and flow separation near the 
stern in the experiments decreases the bow-down trim. 

In general, SF succeeds to predict some qualitative trends present in the experimental results. Firstly, Figure 3 and Figure 4 
show that the sinkage near the aft 𝑠𝑠AP is smaller than the sinkage at the bow 𝑠𝑠FP, both in the experiments and SF. This bow-

Figure 4 Comparison between sinkages calculated with SF  and 
experimental results amidhips (𝒔𝒔𝟎𝟎), at the fore perpendicular (𝒔𝒔𝑭𝑭𝑭𝑭) 
and at the aft perpendicular (𝒔𝒔𝑨𝑨𝑨𝑨). Encounter of T0E (own ship) and 

C0D (target ship), both sailing at 8 knots, 𝑭𝑭𝒓𝒓𝒉𝒉 =0.305, 𝒉𝒉 = 18.6 m and 
𝒚𝒚𝒄𝒄𝒄𝒄 = 131 m. 

Figure 3 Comparison between sinkages calculated with)SF and experimental 
results amidhips (𝒔𝒔𝟎𝟎), at the fore perpendicular (𝒔𝒔𝑭𝑭𝑭𝑭) and at the aft 

perpendicular (𝒔𝒔𝑨𝑨𝑨𝑨). T0E (own ship sailing at 8 knots, 𝑭𝑭𝒓𝒓𝒉𝒉 = 0.305) is 
overtaken by C0D (target ship, sailing at 12 knots, 𝑭𝑭𝒓𝒓𝒉𝒉=0.457), 𝒉𝒉 = 18.6 m, 

𝒚𝒚𝒄𝒄𝒄𝒄 = 131 m. 
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down trim is typical for tankers, which have a large part of their volume in the fore part of the ship (Figure 2). Container 
ships usually show a bow-up moment (Eloot et al., 2011). Secondly, the number and location of peaks in the sinkage trend 
is predicted reasonably well by SF. The midship sinkage 𝑠𝑠0 predicts a single peak near 𝜉𝜉=0. The sinkages at the bow and stern 
𝑠𝑠FP and 𝑠𝑠AP predict a smaller peak and a larger peak. Lastly, both the experiments and SF show larger interaction peak 
magnitudes during an overtaking manoeuvre than during the encounter.  

On the other hand, differences are observed as well. The main differences are the peak magnitudes and the fact that the 
experimental measurements show additional oscillations, which are related to the interaction of the Kelvin wave patterns. 

Given these differences between the theoretical and experimental results, the validation will be limited to a comparison of 
peak magnitudes of the unsteady sinkage. After all, this maximum peak magnitude is the most important part of the sinkage 
analysis. The unsteady part is obtained by deducting the steady sinkage from the total sinkage trend line. This is 
straightforward for the SF result. For the experimental results, a steady state value was calculated by computing the average 
sinkage over the range 𝜉𝜉 = −3 and 𝜉𝜉 =  −2.5. The maximum value of the unsteady trend line is determined and compared 
in the next sections. 

4.2 INFLUENCE OF SEPARATION 

The experimental program tested a range of lateral separations. However, the focus of the experimental test program was 
on close ship passings, so the maximal full-scale 𝑦𝑦cc equalled 131 m. Theoretically, SF cannot be used to replicate these tests, 
since the target vessel is not entirely in the far field of the own vessel. Since the separations were larger than the own ship’s 
breadth, it was assumed that the theory is approximately valid. 

Figure 5 compares the experimental peak magnitudes with the unsteady SF peaks. Overall, it is clear that both for 
encountering and overtaking, the peak magnitudes decrease as 𝑦𝑦cc increases. This decrease is more pronounced for the 
experimental peaks, so the comparison between experiment and software improves as the separation increases. In general 
however, the SF peak is an underestimation of the actual peak. This suggest that the target ship’s water level depression 
amidships is underestimated in SF, which could be due to the linearisation of the hull and free surface boundary condition. 

Figure 5 Influence of separation on the interaction peak size. Left: Large tanker T0E (own ship) and large container ship C0D (target ship) encounter at 
equal speed (8 knots) in a water depth of 18.6 m. Right: Large container ship C0D (target ship), sailing 12 knots, overtakes large tanker T0E (own ship), 
sailing 8 knots, in a water depth of 18.6 m. The legend indicates whether the pressure field of the target ship was calculated with an ‘open’ or ‘canal’ 

bathymetry. 

Additionally, it was investigated whether the target ship’s pressure field should be computed using an open water or canal 
bathymetry. Gourlay (2009) stated that for ships in a canal with reasonable width, the single ship flows as calculated by SF 
can be linearly superimposed to describe the total flow around two ships travelling on parallel courses. However, a single 
ship flow, corresponding to a ship in a canal, assumes that the ship sails along the centre line. In Figure 6 both ships were 
resolved in a canal bathymetry. Clearly, the pressure field due to the container ship is not physically possible near the wall. 
However, since the canal geometry results in a larger pressure close to this container ship, the interaction peak magnitudes 
increase slightly over the entire range of 𝑦𝑦cc, improving the comparison between experiment and SF. 
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It is concluded that, even though using a canal bathymetry for the target ship results in a non-physical pressure field, the 
proposed superposition of single canal flows is useful as long as the own ship is not sailing through this zone with incorrect 
pressure prediction. This is the case when the canal is wide enough. 

Figure 6 Pressure field after an encounter manoeuvre. Large tanker T0E (sailing to the left) encountered the large container ship C0D (sailing to the 
right) at equal velocities of 8 knots in a canal of 525 m (= 𝝀𝝀 ⋅ 𝒘𝒘). The pressure fields are calculated assuming a canal bathymetry, assuming each ship 

lies on the centreline of the respective canal. 

4.3 INFLUENCE OF UKC 

For 20% UKC (calculated as (ℎ −Town)/Town) and 50% UKC of the own ship, similar observations are made as before: the SF 
interaction peaks underpredict the actual peak sizes, but as the UKC increases the peak magnitudes decrease, improving 
the prediction. The sinkage at the bow 𝑠𝑠FP is also larger than the peak sinkage at the stern 𝑠𝑠AP. 

At a small UKC of 10%, the experimental sinkages deviate from the general pattern. At this UKC, the water flow beneath the 
keel is blocked, reducing the sinkage at the bow, while the sinkage aft is influenced by low pressure zone created by the 
propeller action (Eloot et al., 2011). Additionally, the trim of the own ship, and thus the sinkages 𝑠𝑠FP and 𝑠𝑠AP, depends 
simultaneously on the pressure near the forward and aft shoulders. These pressures depend in turn on the longitudinal 
volume and waterplane area of both ships sailing in shallow water (Gourlay, 2014). Further research is required to 
understand the combined effect of these observations on the experimentally determined interaction peaks. 

In contrast to the experiments, the sinkages calculated with SF increase steadily with decreasing UKC. The UKC does not 
appear explicitly in the calculation of the unsteady vertical force, rather through the water depth ℎ and the ship section 
distribution 𝑆𝑆(𝑥𝑥). Consequently, differences are expected between theoretical results and model test results at very small 
UKC. 

Figure 7 Influence of the UKC (of the own ship) on the interaction peak size. Left: Large tanker T0E (own ship) and large container ship C0D (target ship) 
encounter at equal speed (8 knots) with a lateral separation 𝒚𝒚𝒄𝒄𝒄𝒄 = 64.5 m. Right: Large container ship C0D (target ship), sailing 12 knots, overtakes large 

tanker T0E (own ship), sailing 8 knots, with a lateral separation 𝒚𝒚𝒄𝒄𝒄𝒄 = 64.5 m. 

7th Mashcon     18 - 22 May 2025, Bruges, Belgium

135



4.4 INFLUENCE OF VELOCITY 

Both the velocity of the own and target ship determine to great extent the interaction forces. In Figure 8 the interaction 
peaks obtained with SF and experiments during encounter manoeuvres at different speeds are compared. The relative speed 
is calculated as 𝑈𝑈rell = 𝑈𝑈tar-𝑈𝑈own, where 𝑈𝑈ownis a negative value for the encounter manoeuvre. Three speed combinations 
are considered (𝑈𝑈own -𝑈𝑈tar): 4 knots – 8 knots; 8 knots – 8 knots; 8 knots – 12 knots.  
The experimental peaks increase with increasing 𝑈𝑈rel, even when the target ship speed remains constant. The theoretical 
peaks increase at well, but the SF peaks at 12 knots and 16 knots are identical. Clearly, in Eq. (17) and Eq. (20), the unsteady 
vertical force only depends on the speed of the passing vessel. This implies that the superposition of pressure fields as 
investigated in this paper was an oversimplification.  

Figure 8 Influence of relative velocity on the interaction peak size. Large tanker T0E (own ship) and large container ship C0D (target ship) encounter in 
water of depth 𝒉𝒉 = 18.6 m with a lateral separation 𝒚𝒚𝒄𝒄𝒄𝒄 = 64.5 m. 

4.5 INFLUENCE OF SHIP SHAPE 

The results presented so far were limited to the interaction between a large tanker (T0E, own ship) and container ship (C0D, 
target ship) of similar length. However, the ship shapes have an important effect on the pressure fields. When calculating 
the unsteady interaction, the hull shape of the target ship appears in Eq. (17) and Eq. (20). The length and waterplane of the 
own vessel influence the sinkage values via Eq. (22) through (24). 

To verify the effect of the hull shape, both the interaction between a smaller tanker (T0H) and a large tanker (T0E) and 
between a smaller tanker (T0H) and large container ship (C0D) was investigated (Figure 9). The smaller tanker is the own 
ship. The influence of 𝑦𝑦cc is very comparable to the result of Figure 5. By comparing the results of Figure 9 with those of 
Figure 5, the effect of the own shape ship is assessed. The interaction between the small tanker and the container ship 
shows smaller 𝑠𝑠FP and 𝑠𝑠AP peaks (experimentally) than the interaction between the large tanker and the container ship. The 
shorter length of T0H seems an important reason. SF on the other hand predicts larger 𝑠𝑠FP and 𝑠𝑠AP peaks for the  interaction 
between the small tanker and container ship as compared to the interaction between the large tanker and container ship. 
Further examination into this issue is required. 

Figure 9 also includes the interaction peaks corresponding to the interaction between a smaller tanker and a large tanker. 
The large container ship is wider and has a longer parallel midship than the large container ship (Figure 2). When changing 
the target ship, all peaks (experimental and theoretical) increase. The longer parallel midship causes a greater sinkage of 
the water level compared to the container ship (Eloot et al., 2011), which increases the interaction sinkage. The increase of 
interactions peak when changing the container ship with a large tanker is relatively larger for the experiments, which again 
indicates that the pressure field predicted by SF is underestimated because the free-surface and hull boundary conditions 
are linearized. 
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4.6 INFLUENCE OF PROBLEM FORMULATION 

All solutions implemented in SF were derived starting from the partial differential equation proposed by Tuck (1966). These 
solutions have a singularity as 𝐹𝐹𝑟𝑟ℎ approaches 1, which corresponds to a transition from subcritical to trans-critical flow. 
Gourlay (2000) attributed the failing of the basic shallow-water theory close to 𝐹𝐹𝑟𝑟ℎ = 1 to the neglect of dispersive effects. 
By modifying the shallow-water theory to include dispersive effects in open water, the sinkage at transcritical Froude 
numbers could be calculated. 

However, ships such as bulk carriers displace water in confined waters, which has to return along the hull. At some 
combinations of ship speed and canal confinement, the water can no longer be evacuated along the ship’s hull, resulting in 
a pile-up in front of the vessel. This speed is also known as the first critical speed and it is shown by Delefortrie et al. (2024) 
that this critical speed depends on the blockage m of the canal: 

𝐹𝐹𝑟𝑟ℎ,crit1 = �2 sin �
arcsin(1 −𝑚𝑚)

3
��

3/2

. (25) 

Here is m the blockage factor, calculated as 𝐴𝐴M/Ω. 𝐴𝐴M is the surface area of the midship section and Ω is the total cross-
section area of the canal. This expression is commonly attributed to Schijf (1949), although he only presented a formula for 
the critical blockage without showing expressions for the critical speed (Delefortrie et al., 2024). 

Figure 9 Influence of the hull shape and lateral separation on the interaction peak size. Top figure: 
Encounter of small tanker T0H (own ship) with large tanker T0E (target ship) (solid line) or large 

container ship C0D (target ship) (dashed line). Both ships are sailing at 8 knots in a water depth of 
18.6 m. Bottom figure: Small tanker T0H (own ship) is overtaken by a large tanker T0E (target ship) 

(solid line) or large container ship C0D (target ship)  (dashed line). T0H is sailing at 8 knots, while the 
target ships is sailing at 12 knots at 𝒉𝒉 = 18.6 m. 

7th Mashcon     18 - 22 May 2025, Bruges, Belgium

137



In case of a target container ship (C0D) moving in the towing tank, 𝐴𝐴M = 589.59 m2, Ω=9765 m2, 𝑚𝑚 =0.0604 and the critical 
water depth dependent Froude number equals 0.705. Comparing this to a critical 𝐹𝐹𝑟𝑟ℎ=1 in open water, it could be concluded 
that the shallow-water continuity equation Eq. (1) overestimates the critical velocity in case of confined channels.  

To test the influence of the critical speed, the shallow-water equation Eq. (1) was, without mathematical derivation, re-
written to 

�𝐹𝐹𝑟𝑟ℎ,crit1
2 − 𝐹𝐹𝐹𝐹ℎ2�

𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

= 0. 
(26) 

Since 𝐹𝐹𝑟𝑟ℎ,crit1 is not dependent on 𝑥𝑥 or 𝑦𝑦, re-deriving Eq. (17) in a canal of constant width results in 

𝑝𝑝tar(𝑥𝑥own,𝑦𝑦own, 𝑡𝑡)

= −
𝜌𝜌𝑈𝑈tar2

4𝜋𝜋ℎ�𝐹𝐹𝑟𝑟ℎ,crit1
2 − 𝐹𝐹𝐹𝐹ℎ,tar

2
� 𝑖𝑖 𝐾𝐾(𝑘𝑘)𝑆𝑆tar′�����(𝑘𝑘)
∞

−∞
𝑒𝑒
−�𝐹𝐹𝑟𝑟ℎ,crit1

2 −𝐹𝐹𝐹𝐹ℎ,tar
2 |𝑘𝑘||𝑦𝑦cc−𝑦𝑦own|

𝑒𝑒−𝑖𝑖𝑖𝑖�−𝑥𝑥own+𝑥𝑥cc(𝑡𝑡)�𝑑𝑑𝑑𝑑, (27) 

𝐾𝐾(𝑘𝑘) = coth��
𝑤𝑤
2��

𝐹𝐹𝑟𝑟ℎ,crit1
2 − 𝐹𝐹𝐹𝐹ℎ,tar

2  𝑘𝑘� . 
(28) 

The interaction peaks during an encounter manoeuvre of the large tanker T0E and large container ship C0D, as function of 
the lateral separation, are shown in Figure 10. The reformulated SF solution improves the peak magnitudes at smaller 
separations. However, the reformulated SF solution decreases less with 𝑦𝑦cc, resulting in an overestimation of the interaction 
peaks at larger separation distances. It should be kept in mind that Eq. (1) was developed for a single ship in open water. 
The current correction only addressed the confinement of the canal. However, the unsteady effect, due to the presence of 
another ship, is still simplified according to this correction. A new slender-body shallow water equation should be derived, 
which considers the (moving) target ship. 

Figure 10 Influence of the lateral separation on the interaction peak size. Tanker E and container ship D encounter at equal speed (8 knots) in a water 
depth of 18.6 m. Three results are compared: interaction peak sizes of the experiments, interaction peak sizes solved with the original boundary value 

problem (original SF) and interaction peak sizes solved with the reformulated boundary value problem (new SF). 

5 CONCLUSIONS 

Significant changes in trim and sinkage can occur when two ships pass in a narrow canal, increasing the risk of grounding. 
Despite this risk and the high frequency of ship interactions in port areas, limited experimental data exists on vertical ship 
motions during such interactions. A method was presented by Gourlay (2009) involving the superposition of ship-bound 
pressure fields to estimate these effects. However, due to lack of experimental data, the accuracy of this approach remained 
uncertain. 

This paper implements Gourlay’s method via the SlenderFlow (SF) computer code, which uses Fourier transforms to calculate 
the ship-bound pressure field. An unsteady sinkage could be calculated via the pressure field attached to the target ship and 
was validated against experimental data. 
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SF accurately predicts qualitative characteristics of the trend lines, such as the location and number of peaks. Additionally, 
overtaking manoeuvres induce larger interaction effects than encounter manoeuvres both in the experiments and SF 
calculations. Also, the distribution of volume in the ship is included correctly. 

The qualitative effect of separation 𝑦𝑦cc, UKC and relative speed is predicted correctly in some cases. For instance, reducing 
the lateral separation increases sinkages both in the experiments and calculations. On the other hand, SF predicts 
monotonically increasing sinkages with decreasing UKC or increasing relative velocity, while this is contradicted by the 
experimental results.  

SF systematically underestimates unsteady peak sinkages. Its predictions improve when interaction forces are low, such as 
at lower speeds, larger separation distances, or greater under-keel clearance (UKC).The underprediction of the interaction 
sinkages by SF is both related to the simplifications of the theoretical model and the superposition assumption. The main 
simplifications used in the theory include: ignoring self-propulsion effects, neglecting boundary layer thickening (especially 
during model tests), linearization of the hull boundary condition and linearization of the free surface condition (Gourlay, 
2014). Since these limitations influence the pressure field of the target vessel, the sinkage due to interaction will also be 
affected by these limitations. For instance, linearization of the hull boundary condition and free-surface result in an 
underprediction of the low pressure zone amidship of the target vessel, especially for bulky ships such as tankers. This 
implies that the drawdown force on the own ship due to the passage of a target ship is larger in the experiments, resulting 
in larger experimental sinkages. Propulsion effects and boundary layer thickening decrease the pressure near the stern 
during the experiment, further influencing the pressure field. 

It was also shown that the superposition method is an oversimplification. After all, the sinkage of the own vessel, due to the 
passing of a target ship, increases the submerged volume of the own ship. This in turn will influence the own ship’s pressure 
field, resulting in larger experimental sinkages. This effect depends on different parameters such as the separation and ship 
velocities. Additionally, a target ship is an obstruction for the water flow around the own ship, which will in turn influence 
the pressure field of the own ship. Lastly, the proposed superposition method ignores unsteady effects, which also 
contributes to the difference between experimental and numerical results.  

Additional investigations into the use of SF for assessing ship interactions are required. Firstly, the comparison in this paper 
was between the theoretical method and scaled model test results. However, at model scale (low Reynolds number), the 
boundary layer is thick compared to the ship’s dimensions and more likely to separate near the stern, which may markedly 
change the hull pressure near the stern (Gourlay, 2008). At full scale the boundary layer is thinner and exerts less influence 
on the hull. Therefore, it is expected that the flow characteristics at full scale better resemble the potential flow assumption 
used in the theoretical method. Comparison with full-scale results could therefore prove useful. 

Secondly, SF results under-predicted the experimental results. It could be investigated whether a correction factor can be 
found, depending on relevant parameters, to enhance the prediction by SF. However, reformulating the boundary value 
problem showed an improvement for smaller separations, so it should also be investigated under what conditions the 
mathematical basis remains valid. Also the lack of unsteadiness in the current method deserves further attention. 

Lastly, a superposition of two single flows in a specific bathymetry was used in this paper. It was illustrated that this approach 
leads to unphysical pressure fields, since it is assumed that a ship sails along the canal’s centre line when calculating the 
pressure field. A cross-flow should be included in the theoretical model to extend the approach to ships sailing off-centre.  
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