Some Recent Developments in Dynamic Mooring Analysis for Ships

Presented to Royal Institution of Naval Architects, Western Australian Branch

by

Dr Tim Gourlay, Perth Hydro Pty Ltd Fremantle, 14th October 2020

Talk overview

- 1. Moored ship at open trestle berth *The simple case?*
- 2. Moored ship in harbour Oceanography meets naval architecture
- 3. Two ships moored side-by-side 11 degrees-of-freedom too many
- 4. Long-term simulations

Has anyone got a supercomputer?

Limitations

- This talk will focus on waves, which are the dominant forcing on moored ships in most WA ports.
- Wind loads also become critical for cruise ships (at all ports) and container ships (at Fremantle).
- Current loads become important for high-current ports such as Port Hedland.

Introduction

Geraldton, Panamax bulk carrier, 32x real-time

1. Moored ship at open trestle berth

- Typically operational up to 1.5 2.5 m Hs
- WA examples: North-west LNG terminals
- Classic test case: van Oortmerssen 1973, 200,000 DWT tanker

0.5

Wave frequency (rad/s)

0.6

0.7

0.1

0.2

0.3

04

Sway damping coefficien

0.8

0.9

Moored ship at open trestle berth - findings

- Natural surge, sway and yaw periods are 1-3 minutes.
- Moored ship motions are not sine waves. Frequency-domain modelling (as used for seakeeping) can't be used.
- Use of a Runge-Kutta time-domain solver opens new possibilities. Any external loads can be modelled.
- WAMIT gives accurate wave loads, added mass & damping.
- MoorMotions gives accurate time-domain motions and loads.
- Unlike floating offshore structures, moored ships with fenders have considerable mechanical damping.
- Swell and shallow-water long waves are important.
- Short-period seas can be important, due to second-order wave loads.

2. Moored ship in harbour

- Typically operational up to 0.15 m longwaves
- WA example: Geraldton
- Waves vary in size and direction throughout the harbour
- Development of coupled ship and harbour method in 2017

Perth

Coupled ship and harbour method

- Wave amplitude RAOs in harbour calculated using WAMIT and used to calculate input wave spectrum
- First- and second-order wave loads on ship (and harbour) calculated using WAMIT
- Ship Impulse Response Functions calculated using WAMIT
- Nonlinear fender and mooring line force/displacement curves
- Coupled 6-DoF ship motions and loads calculated using MoorMotions timedomain solver

Coupled ship and harbour modelling, Berth 7

Coupled ship and harbour modelling, Berth 5 validation

Measured wave conditions during validation trial

- Waves measured at Berth 3/4 wave gauge
- 1-hour time period chosen for analysis, 0840-0940 WST, 2nd Oct 2015
- 13 cm significant long wave height (25-120s)
- 14 cm significant swell height (8-25s)

Pertl

Measured ship motions during validation trial

- Trimble R10 GNSS receivers on ship
- GNSS base station on shore
- => high-accuracy 6-DoF ship motions
- Note: no measured mooring line loads

Peak-to-peak ship motion results

	Time-domain,	Time-domain,	Frequency	GNSS
	0.5 t pre-tension	5.0 t pre-tension	domain	measurements
Surge	2.71 m	1.77 m	-	1.88 m
Sway	1.41 m	1.15 m	-	1.17 m
Heave	0.20 m	0.20 m	0.25 m	0.19 m
Roll	0.35°	0.34°	0.51 °	0.52°
Pitch	0.14°	0.14°	0.14 °	0.15 °
Yaw	1.13°	0.66°	-	1.44°

Peak mooring line loads (modelled)

	Time-domain,	Time-domain,
	0.5 t pre-tension	5.0 t pre-tension
Stern lines	5.1 t	7.5 t
Aft breast lines	12.7 t	10.8 t
Aft spring lines	16.5 t	17.8 t
Fwd spring lines	8.9 t	9.8 t
Fwd breast lines	12.0 t	14.4 t
Head lines	5.6 t	9.7 t

3. Two ships moored side-by-side

8x real-time

Examples of side-by-side ship mooring in open water

- Bulk transhipment (e.g. Whyalla iron ore, Cape Preston iron ore, Balla Balla iron ore, Mardie Salt)
- Floating LNG production (e.g. Prelude to LNG carrier)
- Crude oil transfer (lightering)
- LNG bunkering

Side-by-side operability limits

- Mooring line loads: 50% MBL
- Fender rated compression (solid rubber or pneumatic)
- 3 degree roll amplitude on both ships (dry bulk or LNG)
- Relative motion limits at LNG manifolds (hoses)
- 20-25 knot wind limit

Options:

- Anchored, turret moored or slow steaming
- Mooring lines or dynamic positioning
- Side-by-side or bow-to-stern (tandem)

General calculation method – side-by-side ships

- 12-DoF coupled system
- First- and second-order wave loads on coupled system from WAMIT
- 12-DoF coupled impulse response functions from WAMIT
- Gap resonance analysis
- Directional wave spectrum for wave loading
- Heading timeseries
- Nonlinear fender and mooring line curves
- MoorMotions time-domain solver, coupled 12-DoF

Side-by-side example: iron ore transhipment

Option to use "gap lid" to damp wave motions in gap

Relative sway damping

- Buchner 2001 "Numerical multiple-body simulations of side-by-side mooring to an FPSO": free decay sway tests showed linear sway damping insufficient; corrected with linear viscous damping coefficient
- Perth Hydro alternative method: quadratic sway damping based on jet outflow from gap between vessels
- Relative sway motions cause high-speed jet outflow/inflow from between vessels
- Mass conservation and Bernoulli's theorem give hydrodynamic pressure between hulls due to jet
- Pressure times area gives relative sway damping force

Stability of time-domain solver

- Can be difficult to achieve numerical stability of fully-coupled 12-DoF system of equations when using time-domain solver
 Important factors affecting numerical stability:
- Short time step (0.1-0.2 s)
- Long timespan to ensure IRFs decay to zero (100-300 s)
- May need to remove cross-coupling terms in hydrostatic restoring matrix C₃₅, C₄₅ etc.
- Large difference in displacement: may need to de-couple x₉
- Fender and line energy dissipation can produce spurious modes

Validation of motions and loads for side-byside (SBS) LNG carriers

- Marin model tests on side-byside LNG carriers in head seas
- Model tests used single LNGC adjacent to wall. 2 m gap to wall, equivalent to 4 m gap between LNGCs
- Validation of WAMIT v7.3, with or without damping lid

Royal Institution of Naval Architects

SBS wave load validation

- Damping lid has no effect at wave frequencies up to 0.8 rad/s (wave period > 8 s)
- Damping lid important at gap resonance frequencies
- Generally good agreement with model tests

0.8 Wave frequency (rad/s)

0.2

04

0.6

1.4

SBS wave-induced motions validation

- Generally good agreement with model tests
- Damping lid only required for wave periods < 8 s

4. Long-term simulations

Example hourly, 5-year hindcast of side-by-side ship motions and loads:

- 43,824 sets of wind/wave/current hourly data
- 2 loading conditions of smaller vessel
- 87,648 independent 1-hour simulations
- 3600 s simulation takes ~400 s on single core
- Total 10,000 core-hours per site
- May be multiple sites

Pawsey Supercomputing Centre, Perth

For the above project:

- 8 nodes, each of 28 cores, made available on the Zeus cluster
- Original Matlab code compiled in Octave to run on Zeus
- Total 40 hours of computation time

Further information

- Perth Hydro Research Report R2019-09, Comparison of WAMIT and MoorMotions with model tests for a tanker moored at an open berth.
- Gourlay, T.P. 2019 A coupled ship and harbour model for dynamic mooring analysis in Geraldton Harbour, Proc. Coasts and Ports 2019.
- Perth Hydro Research Report R2019-08, Comparison of WAMIT v7.3 with Marin model tests for side-by-side LNG carriers in waves.

All available at <u>www.perthhydro.com/archive.html</u>

