Moored ship motions in the Port of Geraldton
Tim Gourlay

Nautical Institute mooring session, 22"d March 2017
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Natural harbour longwave periods

0.18 T T T T T T T T T
0.16 Berth 4
Berth 5
Berth 6

—~ 014 |
L
©
o
- 012 L

01 L
S
2
2 008 L
[}
©
c
© 0.06 L
[}
Q.
n
2
& 004 L
=

0.02 L

0 | | | I | 1 | | |
0 20 40 60 80 100 120 140 160 180 200

Period (seconds)

Zyngfogel, R., Thiebaut, S., McComb, P. 2015 Measured longwave
ézﬁ T;? I spectral characteristics at ports in Australia and New Zealand. _[— Perth
autica ; T T
Y Institate Proceedings, Coasts and Ports, Auckland. m/\ Hydro




Case study — Panamax, berth 5
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Fenders and mooring lines

S N

Fwd breast lines, 60mm 8-strand

Geraldton Berth 5 polyester / nikasteel

Trelleborg SCN1200 fenders Aft spring lines, 60mm 8-strand Fwd spring lines, 65mm 8-strand
low-friction facing polyester / nikasteel polypropylene / poly composite

MV Sea Diamond
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Motions video — 20x real-time
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GNSS-measured ship motions
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Sea Diamond (loaded condition) - 10 minute motions snapshot
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Maximum peak-to-peak motions

Berth | Long Surge Bow sway | Stern
wave (cm) | (m) (m) SVEVA(1)]

Nord Libra 0.71 1.28 2.41
(Panamax)
Sea Diamond, 5 7 1.62 2.02 1.55
ballast
Sea Diamond, 5 9 2.62 2.98 2.46
loaded
KS Flora 6 9 0.66 1.68 1.42
(Handymax)
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MoorMotions software

 Developed by Perth Hydro

 Time-domain code for moored ship motions, line
loads and fender loads

« External forcing can be waves, wind gusts, currents
or passing ships

 Can combine with 10-day or 16-day weather
forecasts to predict ship mooring line breakage over
the forecast period
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http://www.moormotions.com/

Reconstructed loads — 20x real-time
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Natural ship motion periods
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Ship motion resonance
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Importance of fender damping

* Fender friction is the primary mechanism of surge
damping

 Fender energy dissipation is an important
mechanism of sway and yaw damping
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Figure 2.1 energy absorption Figure 2.2 compresson
Figure 2.1: the shaded area represents the energy absorp- Figure 2.2: Curve 1 represents the compression of the
tion; factor f is equal to the shaded area divided by the rec- fender, Curve 2 the decompression of the fender, whereas
tangular area O-Rm-A-dm the area between those two curves is the energy dissipated

(warmth generated) as a result of hysteresisis.

PIANC 2002 Guidelines for the design of fender systems. MarCom
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Higher pre-tension
— Lower peak loads!
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How does it work?

* Higher mooring line pre-tension
— higher reaction force from fenders
— higher friction force
— more surge damping
— lower surge motions
— lower mooring line elongation
— lower mooring line peak load
* Higher mooring line pre-tension
— keeps ship on fenders
— more energy dissipation by fenders
— lower sway and yaw motions

— lower mooring line peak load

A
Naj.ut‘i?cal —— Perth

Y Institute H;:H _ H)le
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