Moored ship motions in the Port of Geraldton Tim Gourlay

Nautical Institute mooring session, 22nd March 2017

Acknowledgments

- Scott Ha & Mal Perry, Curtin University
- Mid West Ports Authority / Geraldton pilots

Natural harbour longwave periods

Zyngfogel, R., Thiebaut, S., McComb, P. 2015 Measured longwave spectral characteristics at ports in Australia and New Zealand. Proceedings, Coasts and Ports, Auckland.

Case study – Panamax, berth 5

Fenders and mooring lines

Motions video – 20x real-time

GNSS-measured ship motions

Maximum peak-to-peak motions

	Berth	Long wave (cm)	Surge (m)	Bow sway (m)	Stern sway (m)
Nord Libra (Panamax)	4	7	0.71	1.28	2.41
Sea Diamond, ballast	5	7	1.62	2.02	1.55
Sea Diamond, loaded	5	9	2.62	2.98	2.46
KS Flora (Handymax)	6	9	0.66	1.68	1.42

MoorMotions software

- Developed by Perth Hydro
- Time-domain code for moored ship motions, line loads and fender loads
- External forcing can be waves, wind gusts, currents or passing ships
- Can combine with 10-day or 16-day weather forecasts to predict ship mooring line breakage over the forecast period
- www.moormotions.com

Reconstructed loads – 20x real-time

Natural ship motion periods

Ship motion resonance

Do fenders affect mooring line loads?

Importance of fender damping

- Fender friction is the primary mechanism of surge damping
- Fender energy dissipation is an important mechanism of sway and yaw damping

Figure 2.1: the shaded area represents the energy absorption; factor f is equal to the shaded area divided by the rectangular area **O-Rm-A-dm**

Figure 2.2: Curve 1 represents the compression of the fender, Curve 2 the decompression of the fender, whereas the area between those two curves is the energy dissipated (warmth generated) as a result of hysteresisis.

Perth Hydro

How does it work?

- Higher mooring line pre-tension
 - → higher reaction force from fenders
 - → higher friction force
 - → more surge damping
 - → lower surge motions
 - → lower mooring line elongation
 - → lower mooring line peak load
- Higher mooring line pre-tension
 - → keeps ship on fenders
 - → more energy dissipation by fenders
 - → lower sway and yaw motions
 - → lower mooring line peak load

Q & A

www.perthhydro.com

