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The supercritical bore produced
by a high-speed ship in a channel

By T. P. G O U R L A Y
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(Received 8 December 1999 and in revised form 1 November 2000)

An experimental investigation is made into the various flow regimes accompanying
a ship travelling in a channel at supercritical speeds. The phenomena of smooth
solitons, broken solitons, bores, and steady supercritical flow are observed. We look
at the conditions under which each phenomenon exists, and the depth-based Froude
numbers at which the transitions occur. Special emphasis is placed on ship bores, and
we put forward a simple theoretical model for predicting the form of the bores as
well as the transition to steady supercritical flow.

1. Introduction
Thews & Landweber (1935) observed in model experiments that when a ship is

travelling in a uniform channel at close to the ‘critical speed’, the flow is unsteady,
with waves propagating forward of the ship almost periodically. This critical speed
is the natural speed of long waves in shallow water, given by

√
gh, where g is

the acceleration due to gravity and h is the undisturbed water depth. The form of
these waves was later found (Huang et al. 1982) to be very similar to the solitary
waves predicted by the Korteweg–deVries equation, which are one-dimensional crests
capable of travelling unchanged in form along a uniform channel.

In recent years, much experimental and theoretical work has been done in order
to understand and predict the form of these solitary waves, or ‘solitons’. In terms of
the depth-based Froude number Fh = U/

√
gh (the ratio of the ship speed U to the

critical speed
√
gh), one such finding is that pure solitons can no longer be generated

when Fh is greater than about 1.2. This was predicted theoretically by Huang et al.
(1982) who calculated that no solitons should exist for Fh > 1.175, in rough agreement
with their experiments. Other experimental investigations (e.g. Ertekin, Webster &
Wehausen 1985; Lee, Yates & Wu 1989) have also shown that the solitons radiating
ahead of a ship begin to break when Fh is between 1.1 and 1.2.

The Korteweg–deVries/Boussinesq-type equations often used to model ship solitons
(see e.g. Wu 1987) cannot be used directly to model the ship waves at Froude numbers
greater than about 1.2, because of energy lost across the breaking waves. In this article
we shall propose a simple one-dimensional method for modelling the waves ahead of
the ship, which allows for the energy loss that occurs once the solitons have broken.

At even higher Froude numbers, Constantine (1961) predicted and observed that the
ship eventually ceases to produce a bore travelling ahead of it, and the flow becomes
steady. The transition between these different phenomena will also be studied here.
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2. One-dimensional theory for a ship in a channel
Constantine (1961) proposed a one-dimensional theory for studying the flow past a

ship in a channel, which states that the only significant velocity component is in the
direction of the ship’s motion, and this velocity is uniform across the channel. Similarly,
the free surface height is also uniform across the channel. Although Constantine only
considered a block-like ship, we shall consider here a ship of general shape.

The assumptions made in deriving this theory are that the channel’s width and
depth should be small compared to the length of the ship, so that the streamwise
velocity becomes uniform across the channel; also that the ship’s dimensions change
only slowly along its length, so that transverse and vertical velocity components are
of smaller magnitude than the streamwise component. It is a fully nonlinear theory,
with no assumptions being made about the magnitude of the free surface elevation
or streamwise velocity component.

The method is valid for a channel of arbitrary cross-sectional shape, provided that
this shape is constant along the channel and that the ship and channel walls are
approximately vertical at and near the waterline. We define the channel’s waterline
width as w and undisturbed average depth as h; this allows us to use the theory for
either rectangular or non-rectangular channels. In order to simplify the analysis, we
shall consider the ship to be vertically fixed in its rest position, so that it is unable to
heave and pitch.

By considering the continuity and Bernoulli relations for this one-dimensional flow,
Tuck (1974) showed that steady solutions are impossible for a range of Froude
numbers extending above and below Fh = 1. The limits Fh = Flim of this range satisfy
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where B is the ship’s beam at any point along its length and S the corresponding hull
section area.

Because of the local nature of this theory, each point along the ship’s length, having
different values of B and S , has its own range of Froude numbers for which no steady
flow exists. Therefore the unsteady region for a given ship is the envelope of these
Froude number ranges. In most cases, however, using the values of B and S from the
hull section of largest cross-sectional area will give the correct ‘unsteady’ range.

The smaller solution of (1) for Flim is denoted F−lim, which is the upper Froude
number limit of steady subcritical flow; the larger solution F+

lim is the lower Froude
number limit of steady supercritical flow. These will normally be less than and greater
than unity respectively. When F−lim < Fh < F+

lim, the steady flow of water around the
hull cannot satisfy continuity without violating the Bernoulli condition (i.e. gaining
energy). This leads to a piling up of water at the bow, as not all of the water can
get past the ship. The piled-up water at the bow radiates ahead of the ship either as
solitons or a bore.

2.1. Unsteady bores

Let us now consider the application of one-dimensional theory to the formation of an
unsteady bore travelling ahead of the ship. Figure 1 shows a side-on view of the ship
and channel in this situation. The still water ahead of the bore has depth h, while the
shelf of water between the bore front and the ship has depth h1. We wish to solve
for this unknown depth h1, as well as the speed of the bore front V and fluid speed
behind the bore W . All of these quantities are considered constant.
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Figure 1. One-dimensional bore.

Conservation of mass in a moving control volume that includes the bore front
requires (Stoker 1957, p. 321) that

Vh = (V −W )h1 (2)

while the rate of change of momentum of the control volume is used to give

Wh1(V −W ) = 1
2
g(h2

1 − h2). (3)

No energy balance is applicable because energy is lost across the breaking bore front
(Stoker 1957, p. 319). The conditions (2) and (3) can be thought of as determining
V and h1 in terms of the fluid speed W . As W increases, V and h1 both increase
monotonically. But what determines W?

We know that the bore is originally formed because not all of the water can move
past the ship without violating energy conservation. Because energy is required to
drive the bore, if W can be decreased by increasing the amount of water moving past
the ship, it will be. Therefore the bore will be as small as possible, in order to pass
the maximum amount of water under the ship.

To see how small W may be without violating Bernoulli’s law, we first consider
the case of steady subcritical flow. According to one-dimensional theory, there is a
maximum Froude number F−lim, given by (1), for which steady subcritical flow may
exist. F−lim depends only on B/w and S/(wh). This defines the maximum ship speed
into still water of a given depth for which steady flow is possible.

When a bore is produced, the flow is no longer steady and the ship is no longer
advancing into still water (because the water has speed W ahead of the ship).
However, in a frame of reference moving forward with speed W , the ship has relative
speed U −W , and the flow is steady in the vicinity of the ship since h1 is constant.
The local Froude number is therefore

U −W√
gh1

(4)

in this frame of reference. Decreasing W and h1 increases this Froude number; as
such, the minimum possible values of W and h1 will occur when the local Froude
number is at its upper limit. Therefore the remaining condition on W that is needed is

U −W√
gh1

= F−lim, (5)

with F−lim being given by equation (1) for a given ship and channel.
Conditions (2), (3) and (5) define three simultaneous equations for the three un-

knowns h1, W and V . We can eliminate W and V from these equations to give

2
h1

h

(
Fh −

√
h1

h
F−lim

)2

=

(
h1

h
− 1

)2(
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h
+ 1

)
(6)

for the non-dimensional free surface height h1/h. This can be solved numerically and
then the corresponding values of W and V found.
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Figure 2. Froude number ranges for which the bore speed V is greater than or
equal to the ship speed U.

The above analysis has been carried out assuming that V > U, i.e. that the bore
is able to travel faster than the ship. Calculations suggest that for practical ship and
channel configurations this should normally be the case at low supercritical Froude
numbers. As the Froude number increases, however, there will be a point at which
V = U. If this is less than F+

lim, there will be a range of Froude numbers for which
the bore predicted by this theory is unable to travel faster than the ship, yet steady
supercritical flow is not possible. So what will happen according to one-dimensional
theory in this region?

Provided that we are still in the critical range, i.e. Fh < F+
lim as given by (1), steady

flow is still unable to exist without changed conditions ahead of the ship. Therefore a
bore must still be produced in order to decrease the local Froude number (4) below
F−lim. Note that the local Froude number cannot be increased to F+

lim, as this would
involve a negative bore propagating ahead of the model, which is impossible (Stoker
1957, p. 321).

In this case it is clear that the smallest possible bore will move at the same speed
as the ship, i.e. V = U. The condition (5) is no longer true in this case, since the local
Froude number is less than F−lim. With V known, we only need the bore conditions
(2) and (3) to solve simultaneously for h1 and W .

The range of Fh for which V is greater than or equal to U is shown in figure 2.
We see that for each value of F−lim, there is a value of Fh above which any bore must
travel at the same speed as the ship. This changeover value of Fh is seen to decrease
as F−lim comes closer to unity.

We can now identify four possible wave-making regimes that could occur for a
ship travelling in a channel at faster than the critical speed. In order of increasing
Froude number, these are:

(i) solitons travelling ahead of and faster than the ship;
(ii) a bore travelling ahead of and faster than the ship;
(iii) a bore travelling ahead of the ship at the same speed;
(iv) steady supercritical flow.
At small blockage coefficients S/(wh), F+

lim is close to 1, so we would expect that
soliton generation will cease before the solitons start to break. In this case no bores
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will be produced at all. For larger blockage coefficients, F+
lim is larger and bores will

be produced in the approximate region 1.2 < Fh < F+
lim. Depending on the ship and

channel geometry, these bores may travel faster than the ship for all, part of, or none
of this range.

For the cases considered in this article, V > U for all Fh < F+
lim, so that the bore

should always be travelling faster than the ship. We saw in figure 2 that as F−lim comes
closer to unity, V = U at smaller Froude numbers. However, F+

lim also normally
decreases in that case, so that bores moving at the same speed as the ship may still
not be produced.

According to (1), it is possible to increase F+
lim while keeping F−lim constant, by

increasing B/w significantly and S/(wh) slightly (Gourlay 1999). Therefore a ship and
channel with a large B/w ratio should have a greater range of Froude numbers over
which bores moving at the same speed as the ship will occur.

It is important to note that this one-dimensional theory yields bore solutions for
all Fh > F−lim. However, its range of validity lies only in the Froude number range
for which solitons are no longer generated and steady supercritical flow has not yet
started.

3. Experimental setup
Experiments to observe ship bores were carried out in the 60 m towing tank at the

Australian Maritime College in Tasmania. A 1.6 m AME CRC model #11 was used
(Bojovic 1997). This is a transom-stern round-bilge monohull which has a parent hull
the same as that of the High Speed Displacement Hull Form series (Robson 1988).
It has block coefficient CB = 0.5, length/beam ratio L/B = 4.00, beam/draught ratio
B/T = 4.00 and midship section coefficient CM = 0.799.

The model was fixed to the carriage in its design waterline position, and was not
allowed to sink or trim. It was moved along the centre of the channel, which is of
width 3.5 m and has vertical walls. Two wave probes, 0.72 m from one of the channel
walls, were positioned at different distances along the tank near the end of the run.
These measured the free surface elevation as a function of time; the time difference
for the bore front passing the two probes was used to determine the bore’s average
speed.

Two different water depths were used, corresponding to h/T values of 1.14 and
2.05. Runs were made for gradually incremented speeds corresponding to Fh = 1.05
and upwards. For each run, video footage was taken to see the changing nature of
the waves ahead of the ship. As noted by earlier investigators, these waves spanned
perfectly across the tank in the soliton and bore-producing Froude number ranges.
The more complicated trailing waves are not amenable to one-dimensional analysis
and were not studied in detail.

4. Experimental results
4.1. h/T = 1.14

For Fh < 1.12, pure solitons were periodically radiated forward of the ship. We
shall not discuss the exact nature of these solitons here, as this has been thoroughly
done both experimentally and theoretically by earlier authors (e.g. Huang et al. 1982;
Ertekin et al. 1985; Lee et al. 1989).

The solitons first began to break at Fh = 1.12, at which stage they had maximum
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Figure 3. Scaled free surface height at first wave probe as a function of time, for (a) Fh = 1.15,
(b) Fh = 1.26 and (c) Fh = 1.35.

elevation h1/h = 1.61. At this Froude number, solitons left the ship’s bow unbroken;
then, when the soliton was roughly a half-shiplength ahead of the bow, breaking
began at the channel walls and rapidly spread inwards until the whole wave was
broken. Each broken soliton subsequently smoothed out to again become a pure
soliton further ahead of the ship.

At higher Froude numbers, breaking began at the bow as soon as the model was
started and the waves subsequently remained broken. For 1.12 < Fh < 1.35 there was
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Figure 4. Scaled mean wave oscillation amplitude a/h.

a gradual transition from broken solitons at lower Froude numbers to an almost-pure
bore at higher Froude numbers. Figure 3(a–c) illustrates this transition as the Froude
number is increased. Here we have plotted the scaled free surface height h1/h at the
first wave probe as a function of time, for Fh =1.15, 1.26 and 1.35. The time at which
the bow and stern pass the probe is also indicated. The figures could also be taken
to roughly represent the free surface profile as a function of distance along the tank,
at a given moment in time.

We notice in these figures that the maximum free surface height remains approx-
imately constant at the breaking threshold (h1/h = 1.61) as the Froude number is
increased. It is the wave troughs that elevate as Fh increases, until at Fh = 1.35 the
wave ahead of the ship is very close to a pure bore.

Although the wave front in figure 3(c) is only a half-shiplength ahead of the model,
it is still travelling faster than the model; at these higher speeds there is less time for
the bore to form, and the speed difference between it and the model is smaller. This
means that the bore is only slightly ahead of the model by the time the first wave
probe is reached. For this reason, results for wave heights were taken at the second
wave probe, where the waves were more completely developed.

The progression from solitons to a pure bore as Fh increases is illustrated in figure 4.
Here we have plotted the experimental mean wave amplitude a, which is equal to
half of the difference between the mean peak and mean trough elevations ahead of
the ship. This is scaled with respect to h and plotted as a function of Froude number.
We can see that a/h tends to zero as Fh increases, meaning that the waves ahead of
the ship change gradually to a flat shelf of water.

At this depth, the bore was seen to travel faster than the model whenever it
was produced. For 1.43 < Fh < 1.48, however, the bore was travelling only slightly
faster than the model. The measured bore speed will be compared to the theoretical
predictions in the following section.

At Fh = 1.48 the bore that had spanned the channel at lower Froude numbers
became a bow wave that swept back at a slight angle; this indicated the imminent
commencement of steady supercritical flow. As the Froude number increased further,
this bow wave swept back at a gradually increasing angle, with the flow being steady
at each Froude number.
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4.2. h/T = 2.05

In the deeper water with h/T = 2.05, smooth solitons were still observed at Froude
numbers up to Fh = 1.11. At this Froude number (almost exactly the same as in
the shallower water) the solitons started to break slightly ahead of the model, before
re-forming further ahead. The breaking solitons had a maximum free surface height
of h1/h = 1.60, which is also very similar to the shallower water result.

At higher Froude numbers (1.2 < Fh < 1.3) a single breaking wave spanning the
tank was produced at the ship’s bow. This was moving only slightly faster than the
ship. Because of the high model speed, the wave was unable to move far ahead of the
ship before the end of the tank was reached. The transition to steady supercritical
flow occurred at Fh = 1.31, and the bow wave then swept back at a rapidly increasing
angle at higher Froude numbers.

5. Comparison with one-dimensional theory
5.1. h/T = 1.14

According to the one-dimensional theory described in § 2, the production of bores at
a given depth (governed by (2), (3) and (5)) depends only on the Froude number Fh
and the limiting Froude number F−lim of steady subcritical flow. F−lim as given by (1)
depends only on the beam/channel-width ratio B/w and blockage coefficient S/(wh).
The values of these are taken at the hull cross-section of the largest area.

This example will serve to illustrate the simplicity of the theory. In this case we
have B/w = 0.4/3.5 = 0.1143 and S/(wh) = 0.80(BT/wh) = 0.0802. According to
(1), the limiting Froude numbers are F−lim = 0.702 and F+

lim = 1.437. Therefore, we
should expect a transition from bores being produced to steady supercritical flow at
the limiting Froude number F+

lim = 1.44. The transition occurred experimentally at
Fh = 1.48, which is in reasonable agreement with the theory.

At lower Froude numbers, the one-dimensional theory predicts a bore of constant
height and speed for each Froude number. Using (2), (3) and (5), to predict the
scaled quantities h1/h, V/

√
gh and W/

√
gh only requires input of F−lim and Fh. With

F−lim = 0.702 in this case, we have plotted the scaled bore height h1/h and scaled
bore speed V/

√
gh as functions of Fh in figures 5 and 6 respectively. Experimental

results are also shown on the same axes. The bore height h1 represents the mean free
surface height ahead of the ship, while the bore speed V is calculated using the time
difference between the arrival of the bore front at each probe.

We can see that h1 and V both increased experimentally and theoretically with
increasing Fh. The general form of the experimental results matched the theoretical
results, although the theory underpredicted h1 by 3–6% and V by 1–4%. Due to
the limited tank length, the waves were still evolving slightly when they reached the
end of the tank, which resulted in small oscillations in the experimental values for h1

and V . The theory predicted that the bore would travel faster than the ship for all
Fh < 1.47. Since F+

lim = 1.44 in this case, the bores should travel faster than the ship
whenever they are produced, which was also borne out by experiment.

5.2. h/T = 2.05

At this water depth the relevant parameters governing the flow are B/w = 0.1143 and
S/(wh) = 0.0446. According to (1), the limiting Froude numbers are then F−lim = 0.792
and F+

lim = 1.341. Because of the smaller blockage coefficient, these are both closer to
unity than for the shallow water case. The theoretical prediction for the transition to
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Figure 5. Scaled bore height as a function of Fh for h/T = 1.14; full line shows theoretical results
and points show experimental results.
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Figure 6. Scaled bore speed as a function of Fh for h/T = 1.14; full line shows theoretical results
and points show experimental results.

steady supercritical flow (F+
lim = 1.34) again agreed quite closely with the experimental

value at Fh = 1.31.
Because the transition to steady supercritical flow occurred at a relatively low

Froude number in this water depth, pure bores were not really produced. The waves
more closely resembled broken solitons; because these were only slightly ahead of
the ship’s bow by the end of the tank, it was impossible to measure an average bore
height to compare with the theory. The wave speed (not shown) was still quite close to
the theoretical values over the small Froude number range of bores being produced;
however, because the waves were still evolving, the experimental results were more
erratic than in the shallower water.

6. Conclusions
For Fh greater than about 1.12, the solitons produced by a ship in a channel begin

to break, and remain broken as Fh increases. While the maximum height of these
waves stays approximately constant at the breaking threshold, the troughs between
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these broken waves rise in elevation as Fh increases, until the waves resemble a flat
shelf of water travelling ahead of the ship.

In the entire speed range where solitons and bores are generated, the free surface
ahead of the ship is uniform across the channel. This fact, along with the shallow water
assumption, permits analysis of the flow ahead of the ship using a simple unsteady
one-dimensional theory. We have developed this theory for a ship of general shape
that is fixed in its design waterline position, and compared the results to experimental
values for the bore’s height and speed. The general form of the results agreed with
the theory, although the height and speed of the bore both exceeded predictions by
1–6%.

It seems likely that the discrepancy at lower Froude numbers is due to the broken
solitons having a higher natural speed than a pure bore would. At higher Froude
numbers, the bore may have a slightly higher speed when it first moves ahead of
the ship, before settling down to a constant speed at larger times. A longer tank is
required to verify this experimentally.

In the experiments performed here, only bores travelling faster than the ship
were observed; however, in cases of larger ship-beam/channel-width ratio, the theory
predicts a range of Froude numbers over which bores should travel at the same
speed as the ship. We showed how the height of such bores can be calculated using
one-dimensional theory.

The experiments showed a clear transition from bore production to steady super-
critical flow, and the Froude numbers at which this occurred agreed quite well with
the theory.

Although the case of a fixed ship was chosen here in order to simplify the analysis
and gauge more precisely the accuracy of the method, extension to the case of a ship
that is free to sink and trim is possible. The Froude number limits of steady flow have
already been found in this case (Gourlay 1999). In order to calculate the form of the
bores, we must consider the inverse problem of solving the flow around the ship in
its (as yet unknown) squatted position. Alternatively, the sinkage and trim could be
found approximately by finding the force and moment on the ship in its rest position.

If the sinkage and trim are known, the method will still require only the maximum
section area and corresponding beam as input; however, these must be adjusted to
include any increase due to local sinkage below the ship’s rest position. The main
squat effect will be a large bow-up trim while bores are being produced. We might
expect that, despite the large trim, the point along the ship’s length at which the
maximum section area occurs will not be significantly displaced from its rest position.
If this is the case, the current theory could be used unmodified. Further theoretical
and experimental studies are required to clarify this.

I would like to thank the Australian Maritime College in Launceston for allowing
me to conduct the tests, particularly J. Duffy, G. McFarlane and M. Renilson; also,
Professor E. O. Tuck of the University of Adelaide for valuable discussions on the
subject.
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