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Abstract

This thesis deals with the squat of a moving ship; that is, the downward displacement
and angle of trim caused by its forward motion. The thesis is divided into two parts, in
which the ship is considered to be moving in water of constant depth and non-constant
depth respectively. In both parts, results are given for ships in channels and in open
water.

Since squat is essentially a Bernoulli effect, viscosity is neglected throughout most of
the work, which results in a boundary value problem involving Laplace’s equation. Only
qualitative statements about the effect of viscosity are made.

For a ship moving in water of constant depth, we first consider a one-dimensional theory
for narrow channels. This is described for both linearized flow, where the disturbance
due to the ship is small, and nonlinear flow, where the disturbance due to the ship is
large. For nonlinear flow we develop an iterative method for determining the nonlinear
sinkage and trim. Conditions for the existence of steady flow are determined, which take
into account the squat of the ship.

We then turn to the problem of ships moving in open water, where one-dimensional theory
is no longer applicable. A well-known slender-body shallow-water theory is modified to
remove the singularity which occurs when the ship’s speed is equal to the shallow-water
wave speed. This is done by including the effect of dispersion, in a manner similar to the
derivation of the Korteweg-deVries equation. A finite-depth theory is also used to model
the flow near the critical speed.

For a ship moving in water of non-uniform depth, a linearized one-dimensional theory
is derived which is applicable to unsteady flow. This is applied to simple bottom to-
pographies, using analytic as well as numerical methods. A corresponding slender-body
shallow-water theory for variable depth is also developed, which is valid for ships in chan-
nels or open water. Numerical results are given for a step depth change, and an analytic
solution to the problem is discussed.
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General Introduction

When a ship is travelling forward in calm water, it sits in a different vertical position
to when it is at rest. This phenomenon is known as “squat”. It is characterized by an
overall vertical displacement of the ship, called the sinkage, as well as a certain angle of
trim.

Squat can be thought of as a simple Bernoulli effect, caused by the increased flow speed
beneath the ship’s hull, which decreases the fluid pressure on the hull. The vertical
displacement of the ship is therefore usually downward.

This means that when a ship is travelling through shallow water, squat may in fact cause
it to strike the bottom, despite the fact that it may have had sufficient clearance when
at rest. In fact, sinkage usually increases with speed, so that the faster a ship is moving,
the more it is at risk of grounding. The problem is exacerbated by the fact that the trim
of the ship will make either the bow or the stern particularly vulnerable to grounding.

If a ship’s squat can be accurately predicted under given conditions, sufficient allowance
can be made for the ship to pass through shallow water in safety. Conversely, since the
cargo capacity of a ship is often limited by conservative squat predictions for its passage
through shallow water, accurately predicting the squat allows the ship to carry as much
cargo as is safe. At the same time, the ship’s captain can know the maximum speed at
which the ship can travel for each depth of water.

Our aim is therefore to be able to predict accurately the squat of any ship at any given
speed and water depth. This will be done by building on existing techniques and devel-
oping some new ones.
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Historical Summary

The phenomenon of ships settling downwards in the water when they are under way has
been known to mariners for centuries. What has not been well known, however, is how
the magnitude of this sinkage varies with water depth and vessel speed. It is only in quite
recent times that these have been included in prediction of a ship’s sinkage. Indeed, in
former times, a fixed allowance, say one foot, would often be allowed for this sinkage
whatever the water depth or vessel speed.

Early analytic methods

Early attempts to predict ship squat mathematically were made by assuming water of
infinite depth, using methods previously developed for studying ship waves. Havelock
(1939) determined analytically the sinkage of an elliptical hull form in infinite depth of
water. This theory was of limited usefulness, however, as the problem of most practical
importance is that of a ship travelling in shallow water. This is the situation in which
the ship is most likely to hit the sea floor and do serious damage, so its squat needs to
be accurately predicted under these circumstances. As it was known that the presence
of the sea floor has a profound effect on the hydrodynamics, subsequent squat prediction
methods attempted to take the water depth into account.

A subsequent important early work on squat considered a very different physical prob-
lem: that of a ship travelling in a shallow, narrow channel. Under these assumptions,
Constantine (1961) asserted that flow around the ship could be studied in much the same
way as open-channel flow, using one-dimensional “hydraulic” theory. He considered the
ship to be stationary and the water to be moving past it, which meant that the flow was
usually steady in this frame of reference. Constantine found that three different types of
flow were possible in this situation.

At low speeds the flow was predicted to accelerate past the ship, producing a pressure
decrease beneath the hull and a downward sinkage of the ship. However, once the ship
reached a certain speed, which is dependent on the ship and channel dimensions, no such
steady flow could be found. In this “critical” speed range, Constantine predicted that
a one-dimensional bore would be formed, travelling ahead of and faster than the ship.
At higher speeds the ship would catch up to this bore, resulting in a new type of steady
flow. This “supercritical” flow would be characterized by a decelerated flow past the ship,
causing the ship to rise in the water.
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In 1966, Tuck developed a slender-ship theory that was valid for shallow water. In fact, it
was valid only for shallow water, as one of the assumptions was that the water depth must
be small compared to the ship’s length. This revolutionary approach yielded expressions
for the ship’s sinkage and trim that were roughly quadratic in the ship’s speed. For
practical speed ranges, the theory generally gave good results for sinkage and trim, and
was used extensively over the next decades. However, a problem with the theory was its
behaviour as the ship speed approached the natural speed of waves in shallow water. In
this case the theory became singular and predicted infinite sinkage and trim.

Whereas the original theory was developed for water of infinite lateral extent, it was
later modified (Tuck 1967) for channels of arbitrary width. Provided that the ship’s
beam remained small compared to the channel width, the final solution was found to
approach the linearized version of Constantine’s solution in the narrow channel limit.
Thus this theory was uniformly valid for any width of channel, and provided a link
between Constantine’s one-dimensional theory and Tuck’s infinite-width theory.

There still remained the problem of the singularity when the ship approached the shallow-
water wave speed, for which Tuck and Taylor (1970) proposed a remedy. They found the
velocity potential for a ship moving in a finite depth of water by rejecting the shallow-
water assumption completely. However, the resulting formulas were extremely compli-
cated and were only studied for some simple test cases.

Meanwhile, in the same article and a subsequent article by Tuck (1974), the one-dimensional
theory for a ship in a narrow channel was also being extended. The limits of steady flow
were more accurately defined for either block-like ships free to squat or general-shaped
ships fixed vertically.

Empirical methods

The sinkage formula given by Tuck (1966) was too complicated for routine use by mariners,
as it required computation of a double integral. In an attempt to find a simpler expres-
sion that would be easier to implement in practice, Tuck & Taylor (1970) studied the
properties of this double integral. They found that over a wide range of hull shapes it
was roughly proportional to the ship’s displacement divided by the square of its length,
and used this to produce a much simpler expression for ship sinkage.

Experiments performed by Hooft (1974) showed excellent agreement with the sinkage
formula of Tuck & Taylor. However, a compilation of experimental results from several
testing laboratories was made by Huuska (1976) which showed that the formula tended
to underestimate the sinkage. This was later confirmed by Millward (1992). Since the
general speed dependence was accurate, Huuska proposed that a corrective multiplicative
constant be introduced into the formula.

This empirical squat prediction method started a new phase in squat research. Sub-
sequent researchers attempted to fit a universal curve to the experimental results for
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different ships, which had as its parameters the ship speed, water depth and ship dimen-
sions.

Some of these formulas, such as those of Huuska (1976) and Millward (1992) used the
speed dependence calculated by Tuck (1966) but with a simplified dependence on hull
shape. Others matched experimental results to some power of the ship speed: Eryuzlu &
Hausser (1978), Eryuzlu et al (1994), and Barrass (1979) put forward empirical expres-
sions for squat with very different dependences on speed and draught-to-depth ratio.

These empirical methods have been shown to perform well for ships and channels in the
range that they were designed for. Despite having little or no physical basis, they give
accurate squat predictions in the case of ship types, channel types and speed ranges for
which experimental data are available. However, they cannot be expected to perform
well for all hull forms, channel types and speed ranges.

The critical region

For ships travelling in wide channels, the experiments of Graff et al (1964) showed that
sinkage and trim were not unbounded as the ship approached the shallow-water wave
speed. Instead the sinkage reached a maximum before becoming quite small thereafter.

The finite-depth theory of Tuck & Taylor (1970), which was developed for open water,
predicted the correct overall form of the sinkage as a function of speed. A shallow-water
approach by Lea & Feldman (1972) concentrated on a ship travelling at exactly the
shallow-water wave speed, and included the leading nonlinear term to solve for sinkage
and trim. Mei (1976) developed a slender-ship theory for open water similar to that
of Tuck (1966) but including the leading nonlinear and dispersive terms. However, his
paper concentrated on wave resistance and did not calculate sinkage and trim.

Although the flow around a ship travelling in water of constant depth is steady at any
speed if the ship is in open water, a very interesting type of flow was found to occur
experimentally for a ship travelling in a channel at close to the shallow-water wave speed.
Thews & Landweber (1935) observed in model experiments that in this case the flow was
unsteady, with waves propagating ahead of the model. Huang et al (1982) found that
these waves had the same form as solitary waves, or “solitons”, which are single crests
capable of travelling along a channel unchanged in form. However, these solitons were
produced almost periodically, breaking away from the bow of the ship and travelling ahead
of and faster than the model. This was a more complicated scenario than the simple bore
solutions predicted by Constantine (1961) although the generating mechanism was the
same. In fact, at higher speeds in the critical region, where solitary wave production was
impossible, Constantine’s bores were witnessed in the experiments.

The production of solitary waves by a ship in a channel provoked much interest, and is
still the topic of intensive research today. Huang et al (1982) found that the first soliton
produced was invariably the largest, and the first one to break at higher speeds. Ertekin
et al (1985) observed that small solitary waves could be formed at ship speeds well below
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the previously accepted critical region. They observed experimentally that the drag on
the ship fluctuated almost periodically as solitons were produced. It was suggested that
the amplitude of successive waves would gradually tend toward zero if the ship speed is
less than the shallow-water wave speed; however, this issue still remains unresolved.

An attempt to model ship solitons mathematically was made by Wu & Wu (1982) using
Boussinesq equations generalized to allow 2-D wave propagation. Ertekin et al (1985)
compared this method to that of Naghdi (1978) and used both methods to solve nu-
merically for the free surface profile ahead of the model as a function of time. The two
methods, which are the same to leading order in the soliton amplitude, both predicted
solitons of gradually decreasing amplitude for ship speeds less than the wave speed.

Since the Korteweg-DeVries equation was known to be able to model solitary waves
accurately, most mathematical treatments of the problem used KdV-type methods. Wu
(1986) derived a KdV-type equation with a forcing term from the generalized Boussinesq
equations, and used this to calculate the evolution of solitons. He also used energy and
momentum conservation to relate soliton and trailing trough amplitudes, as well as the
components of wave drag.

Mei & Choi (1987) used matched asymptotics to study the solitary waves produced by a
ship in a channel, and explicitly calculated sinkage and trim. The general form of their
results compared reasonably well with the experimental results of Graff et al (1964).

Since the mid-1980’s there has been a large quantity of research published on the subject
of solitary waves; this has been only a brief review, as solitary waves will not be studied
in detail in this thesis.

[ subsequent note: An examiner has pointed out that some of this nonlinear research is
more relevant to the topic than the author had appreciated. In particular, a significant
body of research by Xue-Nong Chen (e.g. Chen & Sharma 1995) improves upon the
linear transcritical results of Chapter 2 of the present thesis. |

Squat in water of non-uniform depth

Interest in this topic came about through the grounding of several ships in shoaling
water. In 1992, for example, the QE2 grounded in Vineyard Sound, Massachusetts,
causing serious damage (see USCG 1993, NT'SB 1993). The accident occurred in shoaling
water as a result of the ship’s squat. In an investigation into the incident (NTSB 1993),
researchers predicted the squat of the ship using constant depth formulae, as there were
no methods available for non-uniform depth. Then, as now, the best estimate of squat
in non-uniform depth was obtained by using the average depth under the ship in the
constant-depth formulae. However, it was not known whether this method would over-
or under-predict the squat for a ship moving towards shallower water, for example.

Even in recent years, little research has been done in this area. Renilson & Hatch (1998)
and Duffield (1997) have carried out experimental investigations into the transient squat
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of a ship travelling through water of non-uniform depth. However, few serious attempts
have been made to treat the problem mathematically.



Overview

In this thesis I shall develop some new mathematical methods for predicting the squat
of a ship. This is done with a view to practical evaluation of the squat of a moving ship,
so that with better squat estimates, ships can pass through shallow water in safety.

Part I of the thesis deals with a ship travelling in water of constant depth. This simplifies
the analysis, because the flow can usually be considered steady in this case.

Chapter 1 introduces a simple one-dimensional theory for flow past a ship in a narrow
channel. We first discuss the commonly-used procedure of solving for the flow with the
ship held fixed in its rest position, rather than in its squatted position. A consistent
nonlinear method for computing sinkage and trim is then developed, which takes into
account the flow changes that occur when a ship squats.

According to this theory, there are conditions under which no steady flow exists, namely
a finite range of speeds that includes the critical speed of shallow-water waves. FEx-
plicit forms of these conditions are found for a ship of arbitrary shape that is held fixed
vertically, and also for a ship that is allowed to squat.

Chapter 2 describes two improved methods for determining the squat of a ship moving in
open water. These methods are valid at all ship speeds, even those close to the shallow-
water wave speed. Firstly, a generalized shallow-water theory is discussed that makes
allowance for the variation of wave speed with wavelength. Then, a previously-developed
finite-depth theory is improved upon and studied in detail. Computational techniques
are developed for evaluating the resulting formulae, and the two theories are compared
to experimental results for sinkage and trim. The predicted maximum sinkage is in close
agreement with experiment.

Part II of the thesis attempts to solve the more difficult unsteady flow problem of a
ship moving in water of non-uniform depth. This is first done in Chapter 3 using a one-
dimensional theory similar to Chapter 1, but now modified to allow for unsteadiness. It
is found that the sinkage and trim can be found analytically for a ship travelling in a
channel with a sudden depth change to deeper or shallower water.

In Chapter 4, a slender-ship theory is described which is able to treat a general non-
uniform water depth. It is found that the problem can be solved analytically for the case
of a ship approaching a sudden depth change in open water or a channel. For the case of
a ship in a channel, a stable finite-difference method is found for solving the governing

xXiv



equation. Numerical results are given for step depth changes.

Detailed mathematical proofs are left to the Appendix; these discuss the conditions under
which the hydraulic theory is valid, as well as showing that the theories developed here
match each other in the appropriate limits.
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Part 1

Constant Depth



Chapter 1

Steady Squat in a Narrow Channel

In this chapter we consider a ship travelling in a narrow, shallow channel. In practice
this might represent a ship travelling down a river, dredged harbour entrance, or canal
such as the Suez Canal.

1.1 Problem formulation

Figure 1.1 shows a cross-section through the ship and channel in this situation. Although
the channel might have any shape below the waterline, we will depict it as a rectangle for
simplicity. The ship and channel parameters shown in Figure 1.1 will be defined shortly.

local beam B(X)

free surface z = (

| undisturbed water level |

hull section area S(X)

area taken up
by water A(X,t)

w

Figure 1.1: Cross-section of a ship in a channel

We will be considering channels of constant cross-section, with the ship moving in a
straight line along the axis of the channel, but not necessarily in the centre. Since we are
considering channels of arbitrary cross-section, we will define A as the mean channel depth

2



across the channel. w represents the width of the channel at the waterline. Therefore the
undisturbed underwater cross-sectional area of the channel is Sy = wh.

The channel’s waterline width w and mean depth h are both assumed small compared to
the ship’s length. Under these and other restrictions, the main fluid velocity component
is in the direction of the ship’s motion. Also, this fluid velocity is approximately constant
across any cross-section of the channel. This allows us to use a one-dimensional “hydraulic
theory” to describe the flow. A justification of hydraulic theory and the assumptions
under which it is valid are described mathematically in Appendix B.1.

Since the flow relative to the ship may be considered steady, we will use a frame of
reference in which the ship is considered stationary. This is known as a “body-fixed”
frame of reference. If the ship’s speed in a conventional “earth-fixed” frame of reference
is U, in our body-fixed frame there is a free stream flowing past the stationary ship, with
the free stream having undisturbed speed U.

free surface z = (

i

— X

E——

free stream speed U water depth h

— local fluid speed = qU

Figure 1.2: Body-fixed frame of reference

Figure 1.2 shows a side-on view of the ship in the channel. The body-fixed frame of
reference is defined with its origin centred at the middle of the ship, and the X —coordinate
pointing directly down the channel. Far ahead of the ship there is a free stream of speed
U, but the ship disturbs this stream so that its local speed is changed by a factor 4.

The bow and stern of the ship are at X = —¢ and X = / respectively. The total
shiplength is L. = 2¢. The centre of the ship in the longitudinal direction, or “midships”,
is at X = 0.

The vertical coordinate is z, which is centred at the height of the undisturbed free surface.
The actual free surface is at z = (, with ( — 0 far upstream of the ship. Note that
although Figure 1.1 is drawn with ¢ > 0, in practice the free surface normally drops due
to the presence of the ship, meaning that ( is usually negative.

Returning to Figure 1.1 we can now define the ship’s local beam B and local cross-
sectional area S as functions of the X —coordinate. Our third spatial coordinate, the
transverse coordinate y, is centred at the centreline of the ship. However, this coordinate
is not needed explicitly in hydraulic theory. Since, according to hydraulic theory, the free
surface height is a function of X only (see Appendix B.1), it is flat across any cross-section
X = constant.



1.2 The hydraulic equations - fixed ship

In previous works on hydraulic theory (e.g. Dand & Ferguson 1973, Tuck 1974) a ship of
general shape was considered to be held fixed vertically in its rest position while solving
for the flow field. We shall call this the “fixed-ship” approach. This is the situation
depicted in Figures 1.1 and 1.2 that we shall consider now.

In hydraulic theory we need two equations to describe the flow: the continuity equation
and the Bernoulli equation.

The equation of continuity for steady one-dimensional hydraulic flow is obtained by
matching the flux across any cross-section X = constant to the flux far upstream. This
gives

GUA(X) =US, . (1.1)

The area A(X) is the local cross-sectional area taken up by the water as it passes the
ship. This area is equal to the undisturbed water area Sy, minus the submerged section
area of the ship S, and adding the difference due to the rise or fall of the free surface.
From Figure 1.1, we can see that this area has the form

AX)=S,— S+ (w—B)X . (1.2)

For simplicity we have assumed that the ship and channel walls are vertical at the wa-
terline. However we have made no assumptions about the underwater shape of the ship
and channel.

By combining equations (1.1) and (1.2) the continuity equation simplifies to

q[1-%+(1—§)5]:1 (1.3)

in non-dimensional form. Here S/S is termed the “blockage coefficient” and B/w is the
ship-beam /channel-width ratio. We have also introduced the scaled free surface height

¢=¢/h

The Bernoulli equation as used here states that the quantity

P 1 .
ll - 14
p +gz+ZIC1| (1.4)

is constant throughout any simply-connected fluid domain if the flow is incompressible
and irrotational. Here P is the actual fluid pressure, measured in excess of atmospheric
pressure. p is the fluid density, ¢ is the acceleration due to gravity and q is the fluid
velocity vector. Applying the Bernoulli equation on the free surface and equating it to
the value far upstream tells us that

9C + 5@V = 3U* (1.5



By using the depth-based Froude number F, = U/\/gh we can write this in the non-
dimensional form _
2¢
~2
— =1. 1.6
R (1.6)
The continuity equation (1.3) and Bernoulli equation (1.6) constitute two simultaneous
equations which can be solved for the unknowns ( and ¢ at each value of X.

1.3 Hull pressure, sinkage and trim

Once the free surface height and fluid speed have been found, the fluid pressure on the
ship’s hull can be determined. We start by equating the general Bernoulli expression
(1.4) to its value far upstream on the free surface. This gives

P 1, ., 1.,
S(GU2 = ~U2 . 1.

We can then subtract this relation from equation (1.5) to give the following general
expression for the fluid pressure:

P =pg(C—z). (1.8)

Since the pressure is equal to pg multiplied by the distance beneath the free surface, the
pressure is hydrostatic, or the same as if the fluid were at rest (but with the free surface
in its disturbed position). We can therefore use Archimedes’ principle to say that the
volume displaced by the ship when it is moving must be the same as the volume displaced
when it is at rest.

In order to show this mathematically, let us first consider the upward force Z on a moving
ship that is unable to squat. This force consists of the gravitational force on the ship
(which is negative) plus the upward component of the force exerted by fluid pressure over
the submerged hull surface. The gravitational force is the same as would be on an equal
volume of water, by Archimedes principle, that is pgA. Here A is the displacement of
the ship, which is its volume below the waterline when it is at rest. Therefore we have

7 = —pgA + //—P dS.3 (1.9)

where the surface integral is evaluated over the submerged hull surface. Here S is a hull
surface area element with direction normal to and out of the hull surface. z is a unit
vector in the positive z-direction.

Since P (X, z) is zero on the free surface ((X), we can extend the surface integral in (1.9)
to include a slice through the hull at the level of the free surface. Since P is independent
of y, on this slice P is equal to its value where the free surface meets the hull, i.e. zero.
Therefore we can add the surface integral over this slice to equation (1.9), as its value



is identically zero. We now have a closed surface integral to which we can apply the
divergence theorem, so that (1.9) becomes

Z:—pgA—i-///—VP.i av

with the volume element dV equal to dX dydz. The volume integral is evaluated over
that part of the hull lying beneath the free surface. Substituting expression (1.8) into
the volume integral, this becomes

Z = —pgA—i—///png

= pg{volume displaced while moving — A} . (1.10)

Since the ship is held vertically fixed and the free surface is usually displaced downwards,
the displaced volume will be less than the rest displacement, producing a net downward
force on the ship.

In order to simplify this force we will again assume that the ship walls are vertical at and
near the waterline. In this case the change in submerged cross-section area of the ship at
any point X, due to a rise or fall in the free surface, is B(X)((X). Integrating this over
the length of the ship gives the difference in displaced volume due to changes in the free
surface height, so that equation (1.10) becomes

0
Z = pg /_ZB(X)C(X) X . (1.11)

This force, which is usually negative (downward) causes the ship to sink lower in the
water until it reaches equilibrium. Also, because of the variation in pressure along the
ship’s hull, the ship will rotate about the y-axis until it adopts a certain angle of trim.

The fixed-ship method of predicting squat assumes that the flow will only change neg-
ligibly when the ship is allowed to squat. This means that the free surface height and
flow speed can be calculated with the ship fixed vertically in its rest position, and then
sinkage and trim calculated as follows.

rest position

Figure 1.3: Midship sinkage, trim angle and local sinkage

If the middle of the ship (X = 0) sinks down by an amount s, and the ship adopts a
bow-up angle of trim 6, then the actual sinkage of any point along the ship’s length is
o(X)=s+Xtan6.



While at this point no assumption is being made about the magnitude of the midship
sinkage, we know that the angle of trim is generally very small in practice. Typically, for
bulk carriers or container ships that are not travelling at close to the “critical speed” (to
be discussed later) the trim angle is normally less than 0.5 degrees.

This allows us to safely neglect the effect of rotation on the cross-sectional area of the
ship’s hull at a given value of X. As such, the increase in submerged hull cross-sectional
area at any point X, due to the sinkage of the ship, is given simply by B(X)o(X).

Integrating this over the length of the ship gives

/2 B(X)o(X)dX

for the increase in displaced volume due to the sinkage of the ship. Therefore the total
increase in displaced volume due to the change in free surface height and the sinkage of
the ship is

4 l
/_KB(X) C(X)dX + /_KB(X)U(X) X |

so that the net upward force on the ship is now
¢
zng/_zB(X) {C(X) + (X))} dX . (1.12)

In the same way, the change in bow-up moment due to the change in free surface height
and sinkage of the ship is

M = —/_ZXdZ
= g [ X B(X) {C(0) +o(X)} X (1.13)

For the ship to be in equilibrium, Z and M must both be zero. Therefore ¢(X) must
satisfy the simultaneous equations

/_ZB(X) (C(X) +0(X)} dX =0
/_ZXB(X) (C(X)+o(X)} dX = 0. (1.14)

Using 0(X) = s+ X tan#, we can solve equations (1.14) for s and 6 to give

_ Iw [4B(X)((X)dX — My [*, X B(X) ((X)dX
o= M2, — Awlw

_ Aw [ X B(X) ((X) dX = My J*, B(X) ((X) dX

tan @
an M2, — Awly

(1.15)




Here the ship parameters Ay, My, Iy are defined by
¢
Ay = / B(X)dX
—L
¢
My = / X B(X)dX
—¢

v = /ZXQB(X) X .
(1.16)

It is important to remember that according to the fixed-ship method, {(X) is calculated
with the ship in its rest position rather than in its squatted position.

1.4 The linearized solution

For hydraulic theory to be valid, we require the width and depth of the channel to be
small compared to the length of the ship. However, a further simplification can be made
if the blockage coefficient S/Sy and beam/channel-width ratio B/w are both small. This
is more likely to be true in practice for a slender ship whose beam and draught are both
small compared to its length. In this case there is only a small disturbance to the free
stream, so that the scaled fluid speed ¢ is close to 1 and the scaled free surface height ¢
(above the undisturbed level) is close to zero. This can be seen from equations (1.3) and
(1.6) as S/Sp — 0, B/w — 0.

Instead of using the scaled fluid speed § in this case, we introduce the velocity perturbation
(in the X-direction) to the free stream, which is defined as u. Therefore the actual fluid
speed past the ship in our body-fixed frame of reference is U + u, so that

qgU=U+u .

The velocity perturbation u and scaled free surface height ¢ are now both small quantities.
In terms of u and ¢ the continuity equation (1.3) is written
U S B\ -
I+ —|1—-=+(1-=2)¢|=1.
el 5+ (-9

Upon neglecting second-order terms in the small quantities u/U, S/Sy, B/w and ¢, this
becomes

v S -

——=+(=0. 1.17

55+l (117)
Note that this linearized continuity equation and the resulting analysis do not require
the ship and channel walls to be vertical at the waterline; however, they must not be

excessively sloping.
The Bernoulli equation (1.6) when written as

u\2 2
1+—) +==1
<+U) F?



becomes, on linearizing,

u ¢
—+ ===0. 1.1
i 2 0 (1.18)
Equations (1.17) and (1.18) can be solved simultaneously to yield the velocity perturba-
tion

Us
= - 1.19
R ) (1.19)
and scaled free surface height
(= b8 (1.20)
~ So(1—F?) '

In §1.3 we showed how to calculate the ship’s sinkage and trim once the flow field is
known. This method was derived assuming that the flow will only change negligibly
when the ship is allowed to squat. In order to test the validity of that assumption for
linearized flow, let us assume that the beam/channel-width ratio is €, a small quantity.
If the draught of the ship is comparable to the average water depth in the channel, then
S/Sy is also O(e). From equations (1.19) and (1.20) we see that both u/U and  are
small, of order e. Similarly, from equations (1.14) we see that the local sinkage o is of
the same order as (.

Considering the change in free surface height ¢ that results from the sinkage of the ship,
we can say using equation (1.20) that

—F268

o = So(1— F2)’

where 65 is the difference in section area between the ship in its rest position and in its
squatted position. This takes the value B(X)o(X).

The fractional change in free surface height when the ship is allowed to squat is

6 _ 85 _Bo_ (B¢
¢ S S  T\BT

where T is the ship’s draught. Therefore

S-o(i)o(5)-os

since h/T is order 1. This tells us that allowing the ship to squat has only a second-order
effect on the free surface height. Since the sinkage is of the same order as the free surface
height, the sinkage obtained using the fixed-ship method will be correct to leading order
in €. Therefore, for linearized flow, it is valid to determine the flow with the ship fixed
in its rest position, in order to find the ship’s sinkage and trim.

It is instructive to consider the special case of a fore-aft symmetric ship in order to see
how the sinkage depends on each parameter. In this case equations (1.15) are greatly



simplified, since B(X) and (X)) are both even functions of X. This implies that My = 0
and # = 0. The sinkage satisfies

_ S B(X)¢(X)dX
s=— .
Aw
Substituting (1.20) for ¢ then gives
1 U? ¢
= B(X)S(X)dX . 1.21
=10 gsy | BOSE) (1:21)

As well as being a simple estimate of the sinkage of a slender ship in a channel, this equa-
tion gives us a good insight into how the sinkage depends on speed, channel dimensions
and ship dimensions. For example:

* In most practical situations F}, is quite small, so that 1/(1— F?) is close to 1. This means
that the sinkage is roughly proportional to the square of the ship’s speed. However, at
higher speeds, when Fj, approaches 1, there is a singularity. When F}, is greater than
one the sinkage is negative, meaning that the ship rises in the water instead of sinking.

* s is inversely proportional to Sy. For example, halving either the width or average depth
of the channel will double the sinkage.

* For a given shape of ship, the sinkage is proportional to the maximum section area Spay.
Stretching the ship longitudinally will have no effect on the sinkage. Doubling the size
of the ship in all dimensions, while keeping U and Sj constant, will quadruple Sy,.x and
therefore quadruple the sinkage.

The singularity as F, — 1 is a resonance effect as the ship speed U approaches +/gh,
the natural speed of one-dimensional long waves in shallow water. Since the linearized
theory predicts that any wave can travel unchanged in form at this speed, there is in
effect no restoring force on the free surface. Therefore the ship sinks down indefinitely as
Fy, — 1 from below, or rises indefinitely as F}, — 1 from above. Since this situation does
not happen in practice, the linearized solution is not valid when F}, is close to 1; in this
region other effects have to be taken into account.

1.5 Solution of the nonlinear problem - fixed ship

If the ship’s beam is comparable to the channel width, we cannot use the linearized
approach, as the free surface height and velocity perturbation cannot be assumed small.
In this case we must solve the simultaneous equations (1.3) and (1.6) exactly.

Eliminating ¢ between these equations gives the following cubic equation for the scaled
free surface height (:

20D fh(-DE-5-0-9)c o

+ l%(1—5§0)2—2<1—5§0) (1—5)]5—(1—5%)2“:0.



Once 5 is found for all X, the sinkage and trim can be determined using equations (1.15).

1.5.1 Choosing the correct solution

The cubic equation (1.22) can have between one and three real roots, so we must be
careful to choose the correct root.

The real root which is always present represents a backflow (¢ < 0) with A(X) < 0.
This is unphysical and inadmissible. In order to find the correct solution, we can plot
the continuity relation (1.3) and Bernoulli equation (1.6) for various values of Fj,. This
is depicted in Figure 1.4, with typical values B/w = 0.15 and S/Sy = 0.1 having been
chosen. Only the physically admissible branch ¢ > 0 is shown. Since the continuity and
Bernoulli relations must both be satisfied, the solution is given by the intersection of
these curves for a given Fj,.

/Bernoulli, F,=18

Bernoulli, F;, = 1.0

Continuity

Figure 1.4: Typical continuity and Bernoulli relations between scaled free surface height
¢ and scaled fluid speed .

The continuity relation represents a hyperbola in the (cj, ¢ ) plane, which is not explicitly
dependent on F},. The Bernoulli equation defines a concave-down parabola whose steep-
ness increases with Fj. As recognized by Constantine (1961), there are three distinct
flow scenarios, depending on the value of F},.

We see that at low Fj, (e.g. F,=0.5 in Figure 1.4) there are two intersection points A,B in
the region ¢ > 0, both of which have § > 1. One of these (point B) represents a greatly
accelerated flow past the ship (§ > 1), with a greatly depressed free surface (f < 0).
The other intersection point (A) represents a slightly accelerated flow with a slightly



depressed free surface. In order to study the static stability of each of these solutions we
write equation (1.7) as

(=R (1-7) (1.23)

where P; is the actual fluid surface pressure. The Bernoulli curve corresponds to the
equilibrium case when P; = 0.

Looking first at intersection point A, we consider a small change in the free surface height,
with continuity still satisfied, and see how this affects P;. From Figure 1.4, when the free
surface is raised from the intersection point (i.e. 5 is increased), the continuity curve lies
above the Bernoulli curve. Therefore, following the continuity curve will give

¢>Fp (1-2)

and hence, from equation (1.23), P; < 0. This drop in pressure will allow the atmospheric
pressure to drive the free surface back to its equilibrium height. Similarly, a fall in free
surface height will give P, > 0 and a restoring force again. Therefore this intersection
point is stable in a static sense.

Following the same reasoning with the other intersection point (8) shows that a small
rise in the free surface from this equilibrium position will give a positive surface pressure.
This will cause the free surface to continue rising rather than return to this equilibrium
position. Similarly a small fall in the free surface height will cause it to keep falling.
Therefore this situation of greatly accelerated flow past the ship, although it satisfies the
continuity and Bernoulli equations, is unstable.

The two intersection points correspond to the “hydraulic jump” observed in channels
(Stoker 1957). This is a sudden transition from a high speed, low free surface height
flow to a low speed, large free surface height flow. Although both of these flow regimes
satisfy the Bernoulli and continuity conditions, the latter only occurs downstream, with
energy being lost across the transition. This is a special case of the problem solved here,
in which no ship is present so that B/w and S/S; are zero.

The stable flow regime of slightly accelerated flow with a slightly depressed free surface,
which occurs at low Froude numbers, is known as “subcritical” flow. This is the regime
in which ships most often travel.

For intermediate values of Fy, (e.g. F5,=1.0 in Figure 1.4) there are no intersection points
with ¢ > 0. This is the “critical” region in which no steady hydraulic flow exists, a
situation which will be discussed in §1.8.

When Fy, is large (e.g. F,=1.8 in Figure 1.4) there are again two intersection points
in the region ¢ > 0. In this case, however, both roots have ¢§ < 1 and Q: > 0. As for
subcritical flow, we can show using surface pressure arguments that only the root with
the higher free surface and lower speed is stable in a static sense. However, this solution
involves a discontinuity at the bow and stern of the ship, which is inaccurate.

This ‘supercritical” flow past a ship is therefore difficult to model using hydraulic theory.
In any case, it is of less practical interest than subcritical flow for ships in narrow channels,



as a very high speed is normally required for steady supercritical flow to exist. We shall
concentrate on subcritical flow for most of the remainder of this chapter.

1.6 A consistent nonlinear theory for sinkage and
trim

In §1.4 we showed that the fixed-ship method is valid for linearized flow, as the flow field
changes negligibly when the ship is allowed to squat. In this case the difference in flow
velocities between a ship fixed in its equilibrium position and the same ship allowed to
squat is of the same order as other terms already neglected.

However, if the ship’s beam and draught are comparable to the width and depth respec-
tively of the channel, the disturbance due to the ship is no longer small and we must use
nonlinear theory. In this case the sinkage is also large, so that allowing the ship to squat
will significantly change the flow. The fixed-ship method, which assumes that the flow
will only change negligibly when the ship is allowed to squat, will be inaccurate.

Any nonlinear treatment of the problem should therefore solve the flow field as a function
of the ship’s sinkage and trim, and it is this method that we shall now develop. An outline
of this method has appeared in Gourlay (1999).

Although the problem is solved here using one-dimensional hydraulic theory, the method
for calculating sinkage and trim is applicable to any nonlinear theory for ship dynamics.

1.6.1 The hydraulic equations - ship free to squat

If the ship is in its squatted position as shown in Figure 1.3, this has the effect of
changing the hull’s underwater section area. If the ship sinks downwards the hull section
area is effectively increased. When a hull cross-section of beam B(X) sinks downwards
by an amount ¢(X), the hull section area effectively increases by an amount o(X)B(X).
Therefore equation (1.2) for the area taken up by the water passing the ship is replaced
by

AX)=5y—(S+0B)+ (w— B)(. (1.24)

Using equation (1.1), the continuity equation then becomes (c.f. equation (1.3))
S B B\ <
o258 1__>]:1, 1.25
1 So “w * ( w ¢ (1.25)

where we have introduced the scaled local sinkage & = o/h. The Bernoulli equation (1.6)
remains unchanged when the ship is allowed to squat.

If 5(X) is known, the continuity equation (1.25) and Bernoulli equation (1.6) constitute
two simultaneous equations which can be solved for the unknowns ¢ and ¢ at each value



of X. Specifically, eliminating ¢ gives the following cubic equation for the scaled free
surface height (:

2D e-fh(-2-80-H-0-B]e 0w

2 S B\? S B B\ | ~ S B\?
212 -62) o122 ) (1=2)|¢-(1-2-52) +1=0.
+ [F,f ( So 0w> ( So Ow> ( w)]c ( So Uw) + 0

The nature of these solutions and the criteria for choosing the correct solution are the
same as in §1.5.1.

So if 5(X) is known, we can determine the correct profile of {(X) using Newton’s iterative
method to solve (1.26) for each value of X. However, 5(X) is not known in advance;
the two equations which determine its two unknowns s, are the vertical force and trim
moment equilibrium equations (1.14). Dividing these equations through by h, we write
them in terms of the non-dimensional quantities 5 ,0 as

/ZB(X) [EX) +5(X)} dx =0 (1.27)

and
/_ZX B(X) {{(X) +5(X)} dX =0. (1.28)

Using 0 = s + X tan#, equations (1.26),(1.27) and (1.28) now constitute three simul-

taneous equations for the unknowns s,6 and ((X). In general these cannot be solved
explicitly, so an iterative method is required.

As was done in §1.4, we can infer a few things at this point about how the sinkage and trim
scale with the different parameters. For example, equation (1.26) is in the dimensionless
form s B

fi (C’(}’?o’E’Fh) =0 (1.29)
for some function f;. If we scale the expressions (1.15) with respect to suitable length
scales in the X and y directions (e.g. ship length L and maximum beam Bi,,; respec-
tively), we find that these length scales cancel for s and result in a (1/L) factor for tan 6.
Scaling by the depth A in the z direction results in a factor of A for both s and tan 6.
Therefore, from (1.15), we can state that

s=h5:(0)

tan = %fg (g)

where the dimensionless functions f5, f3 depend only on the shape of ship and are unaf-
fected by stretching in the X and y directions. Combining each of these with the relation
(1.29) allows us to infer that

Srnax Bmax
= f4 ( ; 3 Fh)

s
h SQ w



h Smax Bmax
tanﬁszg,( SO T w :Fh)

for some dimensionless functions f, fs.

Obviously this dimensional analysis does not give us nearly as much information as the
simple solution furnished by linearized theory. However, we can infer the following:
if, for a given shape of ship, the parameters are changed in such a way as to keep
Smax/ S0, Bmax/w and Fj, the same, then s/h and Ltan@/h will stay the same. For
example, stretching the ship in the longitudinal direction will have no effect on the
midship sinkage s, but tan @ will change in inverse proportion to the ship length. As
another example, changing the ship’s beam and the channel width by the same factor
will have no effect on the sinkage or trim.

We now consider three different cases of varying complexity for a ship that is free to
squat.

1.6.2 Special case: block-like ship

The problem of nonlinear hydraulic flow around a block-shaped ship that is free to squat
was solved by Constantine (1961). In this case B(X) and S(X) are constant along the
entire length of the ship, corresponding to a ship of constant cross-section with a blunt
bow and stern. Although the assumptions of hydraulic theory are violated near these
discontinuities, the hydraulic theory is only invalid over a small region. Overall quantities
such as sinkage as trim are presumed to be negligibly affected.

If B(X) and S(X) are constant, this means that the free surface elevation ((X) is also
constant along the entire length of the ship (with a step discontinuity at the bow and
stern). Since the fluid pressure is hydrostatic (see §1.3), Archimedes’ principle states that
the ship must sink the same amount as the free surface. In other words, the waterline
always remains at the same level on the ship. Therefore

o=—( (1.30)
which greatly simplifies the solution. Equation (1.24) for A(X) now becomes
AX)=So—S+w(.
We notice that in this case the ship’s beam has no effect on the hydrodynamics.

In fact, this problem is equivalent to that of a ship with the same cross-sectional area
but zero beam. In that case it does not matter whether the ship is fixed or free to squat.
Alternatively, it could represent the flow over an underwater hump. In all cases a free
surface elevation of ¢ changes A(X) by an amount w(.

Using the above expression for A(X), the cubic equation for ¢ becomes
g3 l (1 ) 1 ? (1.31)
F? F?
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This is solved using the constant values of S and B. The sinkage o, which is also constant
along the entire length of the ship, is then found using (1.30).

1.6.3 Simple case: fore-aft symmetric ship

For a fore-aft symmetric ship, the hydraulic theory predicts zero trim angle (# = 0)
whenever a steady solution exists. & is therefore constant in X, and we only require the
force balance equation (1.27) in addition to the cubic (1.26) for ((X). Whereas for the
block ship just considered the sinkage was equal to the constant free surface depression, for
a fore-aft symmetric ship the sinkage is a weighted average of the free surface depression.

Since we cannot solve (1.26) and (1.27) explicitly for &, we consider the scaled net vertical
force function

£(5) = /e B(x) {{(X) + (X))} dX, (1.32)

—
which we require to be zero. Guessing an initial value for ¢ gives the corresponding
profile of ¢(X) by solving (1.26) at every position X. This is then used in (1.32) to find
f(&). If we do this with two different guesses & = 4,51 we can use the secant method
(see e.g. Kreyszig 1993) to find a better estimate & = &5, namely

Gy — a1 f(60) — G0 f(01)
f(Go) = f(61)

(1.33)

Discarding whichever of the previous estimates 6, and &; has the largest value of |f(o)|,
we can then continue the process until the converged solution for 6 and corresponding
profile of {(X) are found.

In practice, the numerical method involves discretizing X, so that equation (1.26) is solved
at a finite number of gridpoints. The integral (1.32) is then evaluated using Simpson’s
method.

1.6.4 General-shaped ship

For a general-shaped ship, the sinkage function o(X) has two unknowns, s and . These,
along with ¢(X), must satisfy the force balance equation (1.27), moment balance equation
(1.28) and cubic (1.26) for (X). As such we have three equations and three unknowns.
However, for any pair of values for (s, #) we can solve (1.26) explicitly for {(X). Therefore,
in effect, we need only consider the two simultaneous equations (1.27) and (1.28), with
{(X) being a known function of (s, ).

In order to solve the two simultaneous equations, we employ a simple Newton method
that uses secant-type approximations to the derivatives. The general method is described
in Broyden (1965).
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The force and moment balance equations (1.27) and (1.28) can be written in terms of
the two functions

f(5,0) = /ZB(X) {e)+ 2+ %tane} X (1.34)
and
m(s,é’):/_ZXB(X) {f(X)—i—%-i—%tanH} dX (1.35)

both of which we require to be zero for the ship to be in equilibrium. In equations (1.34)
and (1.35), ¢(X) is found in terms of (s, #) by using Newton’s iterative method to solve
(1.26). The correct solution for (X)) is chosen in the same manner as described in §1.5.1.

Suppose the correct solution that we are seeking for (s,6) is (5,6), and we make an
estimate (sg,6p). A Taylor Series approximation states that

F(s0.00) + (5= s0) + 90 (6~ o) = [ (5,6) =0
m(so,Ho)—i-aa—T:(E—s) ({;0(0 6o) =~ m(5,0) =0, (1.36)

where all derivatives are supposed to be evaluated at (sg, 6p).

If we can approximate the derivatives in equations (1.36), we can solve simultaneously
for (5,6) to give

)

. f(So,eo)%—? - m(80,90)3—g
5§~ S0+ 9 om _ 0m 9]
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In order to approximate the derivatives in equations (1.37) we need two more points
(s1,01), (s2,02) and their associated functional values for f(s,f) and m(s,f). Using a
similar Taylor expansion to (1.36) we can write

af af

f(81,01) = f(s0,60) + g(é’l — 8o) + 20 —7 (61 — o)
f(s2,09) = f(s0,60) + ?(32 — s0) + g—‘g(eg — 6y) (1.38)

and similarly for the function m(s,#). Again, the derivatives are presumed evaluated at
(8(), 00) .



We can now solve equations (1.38) simultaneously for the partial derivatives, since all the
other quantities are known. This gives

Of _ (02— 00) [f(s1,61) — f(50,00)] — (61 — o) [f(52,02) — f(s0,060)]
88 (02 — (90)(81 — 80) — (91 — 90)(82 — 80)

of _ (s2—50) [f(61,51) = f(b0,50)] — (s1 = S0) [f (62, 52) — f (6o, S0)]
00 (82 - 80)(91 - 9()) — (81 — 80)(02 — 00)
with similar expressions for m(s,#). These derivatives can then be substituted into the
approximation (1.37) for (s, 6).

(1.39)

Once the new estimate from equations (1.37) is found, the process can then be repeated
using this new point (s, ) and two of the old points. To decide which of the old points to
reject, we use here the error criterion |f(s;,0;)|+|m(s;,0;)|, and reject the pair of values
(s,0) with the largest error under this criterion. A satisfactory solution is obtained when
the error falls below a small pre-determined value.

1.7 Results for sinkage and trim

Here we show results for sinkage and trim as predicted by the nonlinear free-ship method.
For comparison we show how these results differ from those obtained using the nonlinear
fixed-ship method.

We consider two different hull shapes: a fore-aft symmetric parabolic hull and a non-
symmetric bulk carrier hull.

1.7.1 Fore-aft symmetric ship

As an example of a fore-aft symmetric ship, we consider a Wigley hull (Shearer & Cross
1965). This mathematically-defined hull has constant draught, with a parabolic water-
plane and parabolic cross-sections. Its local beam and section area curves satisfy

B(X) = Buax (1 - %)

2
S(X) = gTB(X) , (1.40)
where B,y is the maximum beam and 7 is the constant draught.

For the purpose of these results we have chosen the ship to be of length 2¢ = 200 metres,
maximum beam Bp,,, = 40 metres and draught 7' = 9 metres. It is travelling in a channel
of width w = 100 metres and average depth h = 12 metres. Therefore in this situation
we have Bp.x/w = 0.4. The maximum blockage coefficient is

2TB
Smax S — max
/5o 3 wh

=0.2.
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Figure 1.5: Scaled sinkage relative to water depth, as a function of Froude number, for a
Wigley hull with Bp.x/w = 0.4, S/Sy = 0.2.

Figure 1.5 gives the scaled sinkage s/h of the Wigley hull as a function of Froude number.
This is found using both the free-ship and fixed-ship methods. The range of F}, chosen
is from zero up to 0.49, which is near the upper limit of steady subcritical flow for this
ship and channel.

We can see that the fixed-ship method provides a good approximation when F}, is small.
This is to be expected because ( and o are also small and the flow is not significantly
affected by allowing the ship to squat.

However, for larger subcritical F},, there is a marked increase in the sinkage from that
predicted using the fixed-ship method. This is because the sinkage is now large enough
to significantly affect the flow. Specifically, the ship’s sinkage increases the effective hull
section area, causing a greater free surface depression than for the fixed ship and giving
a larger predicted sinkage. For large subcritical sinkages, this effect becomes increasingly
apparent.

For example, we see that when F, = 0.38 (corresponding to a ship speed of 4.1 m/s or
8.0 knots) we have a scaled sinkage s/h of 0.0423, compared to 0.0374 for the fixed-ship
method. This corresponds to an actual sinkage of 0.51 metres, compared to 0.45 metres
as predicted by the fixed-ship method.

When Fj, = 0.49 (corresponding to a ship speed of 5.3 m/s or 10.3 knots) the sinkage is
1.28 metres, compared to only 0.89 metres as predicted by the fixed-ship method.



1.7.2 Bulk carrier hull

We now consider a MarAd L-Series hull (Roseman 1987) of the same length, draught
and maximum beam as the Wigley hull described in §1.7.1, travelling along the same
channel. This ship is much more block-like, so the maximum blockage coefficient is
Smax/So = 0.297. Because of the larger blockage coefficient, the sinkage is larger than
for the Wigley hull at a given Froude number. Also, as we shall see in §1.8, this larger
blockage coefficient decreases the upper limit of steady subcritical flow. In this case,
steady subcritical flow is only possible up to Fj, =~ 0.38.
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Figure 1.6: Scaled midships sinkage for a MarAd hull, with Bya/w = 0.4, Spmax/So =
0.297, 2¢/h = 200/12.

Figure 1.6 shows the scaled midship sinkage of the MarAd hull, using both the free-ship
and fixed-ship methods. We can see again that the fixed-ship method greatly underesti-
mates the sinkage for larger Froude numbers.

The trim angle of the MarAd hull as a function of Froude number is plotted in Figure
1.7. Because S(X) is greater toward the bow than the stern for this ship (the centre of
buoyancy lies forward of midships) the trim is bow-down, or negative by our definition.

As for the midship sinkage, the trim has a roughly quadratic dependence on speed. Also,
we see that the magnitude of the free-ship trim increases markedly from the fixed-ship
prediction when we allow the ship to squat.

From the graphs we see that when F,, = 0.38 (corresponding to a ship speed of 4.1 m/s
or 8.0 knots) we have a scaled midship sinkage s/h of 0.116 and bow-down trim angle of
0.376 degrees. Because of this bow-down trim, the bow of the ship will have a greater
sinkage (Spow) than the stern (Ssiern)-
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Figure 1.7: Bow-down trim (in degrees) for a MarAd hull, with B, /w = 0.4, Smax/So =
0.297, 2¢/h = 200/12.

We can use the relationship
Sbow = S — £sinf

Sgtern = S + £sin 6 | (1.41)

noting that € is measured positive in the bow-up sense, to find the bow and stern sinkage
explicitly.

When Fj, = 0.38, the free-ship method gives a stern sinkage Sgern, = 0.736 metres and
bow sinkage Spow = 2.05 metres. In comparison, the fixed-ship method only predicts
Sstern = 0.594 metres and spow = 1.25 metres. Here we see clearly how much the fixed-
ship method can underestimate the sinkage.

1.8 Existence of steady flow

We saw in §1.4 that linearized hydraulic theory predicts a singularity in the flow when
Fy, = 1. Then, in §1.5.1, we found that the more accurate nonlinear theory predicts that
no steady solution will exist in a “critical” region of finite extent around Fj, = 1.

In this critical region, there is no admissible steady hydraulic flow for which the continuity
and Bernoulli conditions can be satisfied simultaneously. Physically, continuity past the
ship cannot be satisfied without an increase in the energy of the system. This leads to
a piling up of water at the bow of the ship and, according to hydraulic theory, a shelf of
water radiating away ahead of the ship and a trough behind (Constantine 1961). This



“bore” solution only occurs near the upper end of the critical region; at lower Froude
numbers, the actual process involves nearly-periodic production of solitary waves that
move ahead of the ship (see e.g. Huang et al 1982).

Here we show how the boundaries of steady flow, according to nonlinear hydraulic theory,
can be calculated. We will denote these boundaries as the “limiting Froude numbers”
Fy., and F} , such that no steady hydraulic flow exists when F}, is in the range F};, <
F, < F,. Like the sinkage and trim, the values of Fj;, and F};, change when we allow
the ship to squat.

Let us consider the general case of a ship that is free to squat. In this case the flow is
governed by the continuity equation (1.25) and Bernoulli equation (1.6). Writing ¢ as
the subject of each of these equations yields the alternative forms

;1 (1 S _B
= Y~ 1.42
¢ 5 (g +So+aw) (1.42)
and 2
s _ Th ~2
g_7(1—q). (1.43)

These are the relations plotted in Figure 1.4, with the parameters S/Sy = 0.1, B/w = 0.15
and ¢ = 0 having been chosen.

We saw in §1.5.1 that for either low or high Froude numbers, the continuity and Bernoulli
curves had two intersection points for which § > 0. At intermediate Froude numbers
there were no intersection points with ¢ > 0, and this is when no steady solution exists.
Therefore, the boundaries of the critical region will occur at those Froude numbers for
which the continuity and Bernoulli curves are tangent to each other.

To find when this occurs, we equate the gradients dC /dq of the two curves (1.42) and

(1.43), giving
1

_527(1 — g) =
However, ¢ is known in terms of F},, by solving equations (1.42) and (1.43) simultaneously
to give
1 1 S B F?
——1 [ o— | = “h 1— G2 .
-5 (g +So+0w> y (1-7)

Eliminating ¢ between these two equations gives the equation satisfied by the limiting
Froude numbers:

3[F,3 (1—5)]1/3—1?,3 (1—5) = (1—§—&§> : (1.44)

w So w

—F7j .

The transcendental equation (1.44) can be solved for F}, using a simple Newton iterative
method.

As an example, solving equation (1.44) with the parameters used in Figure 1.4 (S/S; =
0.1, B/w = 0.15 and & = 0) gives the two solutions F;;, = 0.6755 and F\ = 1.5125.
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Figure 1.8: Continuity and Bernoulli relations at the limiting Froude numbers Fj;  and
Fi, with S/S; = 0.1, B/w = 0.15 and 6 = 0.
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In Figure 1.8 we have plotted the Bernoulli curves for each of these Froude numbers,
along with the continuity equation. We can see how the continuity and Bernoulli curves
become tangent to each other at these limiting Froude numbers.

We now consider separately the cases of a fixed ship, block ship free to squat and general
ship free to squat.

1.8.1 Fixed ship

For a fixed ship, we need only consider the special case of equation (1.44) in which & = 0.
In this case the limiting Froude numbers are the solutions of

sz (1- 2" - m (1= 2) =2 (1= ) (145)

w 0
which was obtained by Tuck (1974).

Until now we have not discussed exactly how equation (1.44) is to be implemented. The
hydraulic theory is a local theory in that the flow at any station X depends only on
the values of S and B at that station. This is not quite true for a free ship, because &
depends on the values of S and B over the entire shiplength. However, for a fixed ship,
the flow speed, free surface height and corresponding limiting Froude numbers depend
only on the local values of S and B.



This means that every station X, having different values of S and B, can be considered
to have its own limiting Froude numbers. These local limiting Froude numbers F~(X)
and F7(X) are the solutions of equation (1.45) for particular values of S(X) and B(X).
However, for a steady flow to exist, it must exist along the entire length of the ship.
Therefore, the actual limiting Froude numbers for a particular ship are given by

Fipy = mjn P~ (X)

Fif = m)@xF*’(X) . (1.46)

These extremes may occur anywhere along the ship’s length, although they usually occur
at the ship cross-section of largest area.

At this point it is worthwhile making a few observations about the local limiting Froude
numbers. Firstly, F~ and F'* both move further away from unity as the blockage coeffi-
cient S/Sy increases. This is well known. However, it is not just the blockage coefficient
that determines whether a steady solution exists.

For a fixed ship, any change 6¢ in the free surface height produces a change (w— B)J( in
A(X), the local cross-sectional area taken up by the water. Therefore, if the ship’s beam
is comparable to the width of the channel, the free surface can drop markedly with little
effect on A(X). This allows subcritical flow to exist at higher Froude numbers, since
dropping the free surface allows the fluid speed to increase (by Bernoulli’s equation), so
that continuity can still be satisfied.

We can see explicitly the effect of beam/channel-width ratio by writing (1.45) in the form

1 S
Fr=—G |—=
1_§G (So)

1 S
o a () L4
1 — B G S() ( 7)

for some functions G—, G*.

This shows that increasing the B/w ratio while maintaining a fixed blockage coefficient

S/So will increase both F~ and F* by the factor 1/4/1 — g. Of particular interest, F'~
decreases with S/Sy but increases with B/w.

In Figures 1.9 and 1.10 we have solved (1.45) numerically for a range of blockage coeffi-
cients and beam/channel-width ratios. Here we see clearly how F'~ and F't increase with
the beam/channel-width ratio. In fact, for hull sections with small blockage coefficients
but large beam/channel-width ratios (e.g. a section of small draught but large beam),
F~ may be greater than one.

For a block-like ship, it is actually possible to have F'~ > 1 along the entire ship, so that
F.., > 1. Hence, a fixed block-like ship of small draught and large beam can sustain
steady flow, according to hydraulic theory, at Froude numbers up to and above Fj, = 1.
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Figure 1.9: Local limiting Froude number for steady subcritical flow around a fixed
ship, as a function of blockage coefficient. Five different beam/channel-width ratios are
considered.

However, this is impossible in practice; the hydraulic theory is not valid in this case, as
the assumptions for one-dimensional flow are violated at a blunt bow or stern.

Because of the contrasting dependence of F'~ on S and B, the “critical section” of the
ship, where Fj;,, = F'~, need not necessarily be the hull section of largest area. It could
occur anywhere along the ship, even at the ends.

For example, a section with small blockage coefficient but large beam /channel-width ratio
can have F'~ > 1, as mentioned previously. If the ship has a sharp bow or stern, it must
have F~ = 1 at the ends (because F'~ — 1 as S,B — 0). Therefore in this case the
ship sustains steady flow at Froude numbers up to Fj, = 1, when the ends dictate the
beginning of unsteady flow.

One more property of equation (1.45) is that the point on the ship where F~ is minimized
will in general not be the same point where F'* is maximized. That is, the critical section

that determines Fj,, will not always be the same critical section that determines Fj! .

Comparison with experimental results

Tests were undertaken by the author at the Australian Maritime College, in part to study
the transition between unsteady critical and steady supercritical flow. A 1.6 metre-long
high-speed displacement hull was used, which was fixed to the carriage in its design
waterline position and not allowed to sink or trim. The model and channel were such



Figure 1.10: Local limiting Froude number for steady supercritical flow around a fixed
ship, as a function of blockage coefficient. Five different beam/channel-width ratios are
considered.

that Bax/w = 0.1143.

Runs were made for gradually incremented speeds, with wave probes positioned along
the tank and video footage showing the changing nature of the waves ahead of the ship.
For Froude numbers near the upper end of the critical range, a one-dimensional bore was
radiated ahead of the ship. At higher Froude numbers, a sudden transition to steady
supercritical flow was witnessed, as the bore ceased to be produced. The Froude number
at which this occurred was measured and compared to that predicted by equation (1.45).

Two different water depths were used. For the shallower water (h/T = 1.14), the max-
imum blockage coefficient was Spax/So = 0.0802. For this ship and channel the critical
section is the largest section; substituting the maximum values of S/S; and B/w into
equation (1.45) gives a Froude number limit of F; = 1.44 as predicted by the hydraulic
theory. The transition occurred experimentally at Fj, = 1.48.

In the deeper water (h/T = 2.05), the maximum blockage coefficient was Smax/So =
0.0446. This gives Fjf, = 1.34 according to the hydraulic theory, compared to the
experimental transition at F, = 1.31. We see that for both these depths the hydraulic
theory predicts the transition to steady supercritical flow with reasonable accuracy.
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1.8.2 Block-like ship free to squat

As we saw in §1.6.2, the hydraulic equations for a block-like ship that is free to squat
can be obtained by setting B = 0 in the general free-ship hydraulic equations. If we set
B =0 in equation (1.44), we find that the limiting Froude numbers satisfy

3FP 2 =2 (1 — E) (1.48)
So
for a block-like ship that is free to squat. This simple equation was obtained by Tuck &
Taylor (1970). We do not need to use F~(X) and F*(X) here, since S/Sy is constant
along the ship’s entire length. The solutions of (1.48) for F}, are the overall limiting
Froude numbers Fj;, and F .

Because the ship’s beam has no effect on the hydrodynamics in this case, the limiting
Froude numbers depend only on the blockage coefficient. As we can see from the B/w = 0
case in Figures 1.9 and 1.10 (which corresponds to a block-like ship free to squat), Fj,
and F}j tend to the linearized critical value of 1 as S/S; — 0.

lim

1.8.3 General ship free to squat

When we were computing the sinkage of the Wigley and MarAd hulls described in §1.7.1
and §1.7.2, we increased the Froude number slowly so that we were able to get quite
close to the Froude number limit of steady subcritical flow. Due to the iterative process,
solutions for ¢ (X) cannot always be found when F}, is close to this limit. However,
increasing the Froude number slowly and using the previous value for & as a first estimate
will give a fair estimate of the limiting Froude number for a ship that is free to squat.
For example, F},  is slightly greater than 0.49 for the Wigley hull considered, and slightly
greater than 0.38 for the MarAd hull.

A more direct method of finding F}, for a general ship that is free to squat is to solve
equation (1.44). However, in this case the problem is more complicated, since & in
turn depends on the Froude number being considered. If we consider 6(X) to be a
known function of F}, (as solved using the methods of §1.6), then we in effect have two
simultaneous equations for the limiting Froude number and the value of the sinkage at
this Froude number.

For simplicity we shall consider here a fore-aft symmetric ship, where the maximum values
of S and B occur at the midsection. We shall also only consider hull forms for which
the midsection is the critical section. Therefore the values of S and B used in (1.44) are
those of the midsection. The more general case, where the critical section might occur
anywhere along the ship’s length, will be considered subsequently.

Because the problem is non-local, we do not use F'~ (X); only the overall limiting Froude

number Fj;  has meaning in this case.



Solving equation (1.44) for F), gives the limiting Froude number Fj;, in terms of 5.
However, & must also satisfy the force balance equation (1.27), where ((X) is determined
through the cubic (1.26).

These three simultaneous equations allow F}, to be determined by the secant method.
Guessing a value for &, equation (1.44) gives the corresponding value of F}, which makes
the midsection on the edge of critical flow. Since we have assumed that the midsection
is the critical section, if steady flow exists here it must exist everywhere.

We now know that a solution for ¢ can be found for all X using equation (1.26). This then
allows us to calculate f(5) as in (1.32), and if we do this for two initial guesses Gy and
&1, we will find a better estimate & using equation (1.33). Continuing this process until
acceptable convergence is reached, we obtain the limiting value of 6 and corresponding
B

im*

A note on the limit of steady supercritical flow

In §1.5.1 it was stated that steady supercritical hydraulic flow is difficult to model, since
it is not clear which root of the cubic free surface height equation we should choose.
Because of this, we have avoided giving results for steady supercritical sinkage and trim.

This problem becomes relevant when determining the Froude number limit F}; of steady
supercritical flow for a ship that is free to squat. In this case the sinkage of the ship must
be found as part of the process, and this in turn depends on the free surface height along
the entire length of the ship. Because of this we shall not give results for Fjj for a ship
that is free to squat.

In the cases of a fixed ship or a block ship free to squat, we are only concerned with the
conditions under which the Bernoulli and continuity relations become tangent to each
other. Therefore we do not have to choose between the two intersection points of steady
supercritical flow, as they are both coincident when F}, = F . Because of this, equations
(1.45) and (1.48) are valid for the limiting Froude number of steady supercritical flow;
this is irrespective of which intersection point we choose for the free surface height.

1.8.4 Results

Figure 1.11 shows the limiting Froude numbers Fj,,, for a Wigley hull that is either
fixed or free to squat. These were calculated using Bp,x/w = 0.4 and varying values of
S/Sp. Since for the Wigley hull S/Sy = 27/3h (using equation (1.40)), we have used the
draught-to-depth ratio T'/h to show the results.

The varying draught/depth ratios could represent ships with different draughts in the
same channel, or the same ship in channels of different depth. The range of T'/h was
chosen high enough (7//h > 0.5) to ensure that the midsection is the critical section.
Results were not given for 7'/h > 0.82, because the ship was then found to strike the
channel bottom before the critical Froude number could be reached.
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Figure 1.11: Limiting Froude number for steady subcritical flow as a function of
draught/depth ratio, for a Wigley hull with By, /w = 0.4 . Results are independent
of ship length.

From this graph we can find the limiting Froude number for the ship and channel con-
sidered in Section 1.7.1. In this case T'/h = 0.75, so we can read off that Fj;, = 0.507.

lim
Comparing results for the free and fixed Wigley hull, we see that Fj;, is significantly
decreased when the ship is allowed to squat. For example, when T/h = 0.6, the fixed
Wigley hull considered here can sustain steady subcritical flow up to F} = 0.68, whereas
the same ship allowed to squat can only sustain steady flow up to F}, = 0.56. The reason
for this is that allowing the ship to squat effectively increases the blockage, making
subcritical flow become unsteady at a lower Froude number.

The limiting Froude numbers of the block-like hull which is allowed to squat have also
been included for comparison. This hull has a constant cross-section which is the same
as the midsection of the Wigley hull. If this hull were held fixed, its limiting Froude
number would be the same as for the fixed Wigley hull. This is because it is only the
characteristics of the critical section that determine Fj;,, for a fixed ship.

The free block-like hull has larger section area towards the bow and stern than the
Wigley hull. This means that its sinkage is larger, causing the midsection flow to become
unsteady at a lower Froude number than for the Wigley hull. This clearly shows that it
is not just the characteristics of the critical section that determine the limiting Froude
number for a ship that is free to squat.



1.9 The critical section

Here we outline a procedure for determining whether the largest section is in fact the
critical section. If the critical section is not the largest section, we show how to locate it
and find the corresponding limiting Froude number.

1.9.1 Fixed ship
Determining whether the largest section is the critical section

For a fixed ship, the critical section can be found by solving equation (1.45) numerically
for F~(X) and F*(X), and then using equation (1.46) to find Fj;, and F;\ . A more
direct approach is described here. Again, as the approach is equivalent for Fj; and Fj ,
we shall consider here F|; , the upper limit of steady subcritical flow. For simplicity we
shall consider sharp-ended vessels which have their maximum beam and section area at

the same station X, although this need not be at midships.

We can use the relationship between a ship’s local section area and its local beam to find
the relationship between its blockage coefficient and beam/channel-width ratio, given
particular channel dimensions. This is plotted in Figure 1.12 for the MarAd hull and
channel described in §1.7.2. The upper branch is the forward part of the ship and
the lower branch is the aft part of the ship; these meet at the blockage coefficient and
beam/channel-width ratio of the largest section. The bow and stern points both coincide
at the origin.

By solving equation (1.45) at the largest section X = X,,, where B = Bp.x and S = Spax,
we can find F~(Xy,), denoted F. Writing equation (1.45) in the form

S 3. B\1'? F? B
s=ls ) 5 (-0 (1.49)

and substituting F}, = F,,, we can consider this as a relationship between S/S; and B/w
for which the limiting Froude number is F, . This curve is also plotted in Figure 1.12.

Any combination of S/Sy and B/w lying on this curve has a limiting Froude number of
F_, the same as the largest section. All points below this curve have higher values of
F~, while all points above the curve have lower values of F'~. Therefore, in order for the
largest section to have the lowest value of '~ and be the critical section, the ship’s S/S
— B/w curve must lie entirely below the Fi_ curve. This is seen to be true in Figure 1.12,
such that the largest section is indeed the critical section in this case.

This method is much quicker than finding F~(X) for all X, since equation (1.45) only
has to be solved at X = X ;.

Although plotting these curves shows comprehensively whether or not the midsection is
the critical section, a necessary and usually sufficient condition can be simply found as
follows.
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Figure 1.12: Blockage coefficient vs. beam/channel-width ratio curve for MarAd hull,
with corresponding limiting Froude number curve from largest section.

Comparing the gradients of the ship’s S/Sy — B/w curve and the F,; curve at the largest
section, we see that in order for the largest section to be critical, both branches of the
ship’s S/Sy — B/w curve must have gradients greater than that of the F,, curve.

Using the relationship S/Sy = f(B/w), with f’ the derivative of S/S, with respect to
B/w, this condition can be written

Fo)? B\173
f> % { [(Fm)2 (1 - —)] . 1} at B/w = Buax/w , (1.50)
w
which must be true for both branches of the ship’s S/Sy — B/w curve. As well as being a
necessary condition for the largest section to be critical, it will also be sufficient for prac-
tical ships, the only possible exception being ships with extremely bulbous underwater
profiles.

Finding the critical section when it is not the largest section

In the case that the largest section is not the critical section, we suggest an alterna-
tive method for finding the limiting Froude number, and the hull section to which it
corresponds.

Every point on the ship’s S/Sy — B/w curve has its own limiting Froude number F'~, and
a corresponding curve on which this value of F'~ is constant according to equation (1.49).
The minimum value of F'~ has a curve that will just touch the ship’s S/Sy — B/w curve.



This is shown in Figure 1.13, where for this example we are using the Wigley hull and
channel described in §1.7.1, except that the channel width is now halved and the depth
doubled. For the Wigley hull the S/Sy — B/w curve is a straight line, since the sectional
area at any station X is proportional to the local beam.
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Figure 1.13: Blockage coefficient vs. beam/channel-width ratio curve for Wigley hull,
with corresponding limiting Froude number curve from largest section and critical section.
Here Bpay/w = 0.8 and Spax/So = 0.2.

The critical section and Froude number can be determined by finding which limiting
Froude number curve meets the ship’s S/Sy — B/w curve at a tangent. This condition

becomes
f:(F;V{kF)Q@f-gﬂ_g—1}. (1.51)

For a non-fore-aft-symmetric ship, each branch of the ship’s S/Sy — B/w curve must be
considered separately, in order to find the lowest value of F'~.

Equation (1.51) combined with equation (1.49) (with Fj, = F~) gives two simultane-
ous equations for finding the critical section and the limiting Froude number. Writing
equations (1.51) and (1.49) in the respective forms

_2<1_§)f':q}_v%
w

and 5
1 v
=1— —p3 —
f 21} +2,

where v = (F~)2(1 — B/w), allows us to eliminate v or v3, giving in each case

1—f—(y—g>f (1.52)

1
V3



and

v:l—f—3(1—g)f’. (1.53)

From equations (1.52) and (1.53) we obtain the following expression for the value of B/w
at the critical section:

1—f—3(1—§>f’=[1—f—(1—§)f’]3. (1.54)

Once this is found, the limiting Froude number F; can be found using equation (1.53)
to be

—

1—
By =
1

—3f". (1.55)

g |w

In the case of hull shapes having S/Sy = k(B/w) for some constant k, the problem is
greatly simplified. Equation (1.54) for the critical section now gives

B k(3—k)
— = v 1.56
B_Ko-H (1.56)
while the corresponding limiting Froude number, using equation (1.55), is
1—-k
Fyim = : (1.57)
=

We are assuming here that a tangent solution exists, which requires that the B/w value
found in (1.56) is less than Bp,.x/w. In particular, since B/w must always be less than
1, k£ must lie in the range (0,1) or (2,3). However, only the range (0,1) corresponds to
real values of F}; . As such, & must always lie in the range (0,1) for a tangent solution
to occur. In addition, By,.y/w must be greater than the value of B/w given by equation
(1.56). If this is not true, the largest section must be the critical section.

For parallel-sided ships of constant draught 7', we have S = BT and hence k = T/h.
For Wigley hulls, S = 2BT/3 so that k = 27/3h. Since the conditions under which a
tangent solution exists are that k£ is small and By,.x/w is large, this will most likely be
true for vessels of large beam but small draught, or those travelling in narrow but deep
channels.

For the Wigley hull and channel configuration depicted in Figure 1.13, Spax/So = 0.2
and Bpa/w = 0.8, meaning that £ = 0.25. In this case the critical section occurs at
B/w = 0.344, from equation (1.56). The value of the limiting Froude number can be
found from equation (1.57) to be Fj;,, = 0.802. This limiting Froude number curve is
depicted in Figure 1.13; it can be seen to become tangent to the ship’s S/Sq — B/w curve
at the critical section B/w = 0.344. In this case the critical section is closer to the ends
of the ship than it is to the largest section (where B/w = 0.8).



1.9.2 Ship free to squat
Determining whether the largest section is the critical section

A method for finding the limiting Froude number for the largest section of a ship that is
free to squat has been described in §1.8.3. This requires solution over the whole shiplength
of the scaled free surface height ¢ (X). If the largest section is indeed the critical section,
this will always be possible. However, if at any station X a solution cannot be found for
¢ (X), we know that the critical section is not the largest section.

Finding the critical section when it is not the largest section

For simplicity, only symmetric hulls will be considered here. The problem can be solved
as for the fixed ship (§1.9.1), but using the iterative method to find & as in §1.6.4. The
critical section must be found separately for each value of &.

Guessing an initial value for &, each point on the ship’s S/Sy - B/w curve now has a
new curve of constant F'~ passing through it, according to equation (1.44). Equating
gradients, the point at which this curve meets the ship’s S/Sy — B/w curve at a tangent

now satisfies , L,
e (O I ST

which, on eliminating F~ through equation (1.44), becomes

st 2) oo
- [1—f—&§— (1—5) (5+f’)]3 : (1.59)

Once this critical section is found, the limiting Froude number is the solution of

_f_xB
Fy = Jlfif“’ 3G+ (1.60)

With the limiting Froude number calculated for a given value of ¢ in this way, the iterative
procedure for finding the correct value of & and Fy,, is the same as in §1.8.3.

In the case that S/Sy = k(B/w), equation (1.59) for the critical section simplifies to

§= (k+&)(32—k—&). (161)

Since ¢ > 0 for subcritical flow, this expression is more restrictive than the similar
expression (1.56) for the fixed ship. In other words, a larger value of Bp.x/w will be
needed for a tangent solution to exist if the ship is allowed to squat.



The corresponding limiting Froude number for a given value of & satisfies

e
_1-k-c (1.62)

The iterative procedure was carried out for the same Wigley hull and channel configura-
tion described in §1.9.1, but with the ship free to squat. The limiting value of & in this
case is 0.411, with the corresponding limiting Froude number of F}; = 0.414 occurring
at the critical section B/w = 0.773.

We notice that this is a very different scenario to when the ship is held fixed. The limiting
Froude number of F}; = 0.414 is much lower than the value of F};, = 0.802 for a fixed
ship. In addition, the critical section occurs much closer to midships for the free ship, at
B/w = 0.773, compared to B/w = 0.344 for the fixed ship.

1.10 Conclusions

We have outlined a consistent nonlinear method for computing the flow around a ship
that is free to squat, travelling in a uniform channel. This method recognizes the fact
that allowing the ship to sink and trim will give a different flow from that obtained by
fixing the ship vertically in its rest position.

Although the fixed-ship method is valid for linearized flow, it is inconsistent to use it
for cases in which the blockage coefficient and beam /channel-width ratio are not small
quantities.

In the subcritical speed range, the midship sinkage increases the blockage coefficient of
the ship in the channel. This further accelerates the flow past the ship, resulting in a
greater midship sinkage than is predicted using the fixed-ship theory. The trim, whether
it be bow-up or bow-down, is also underestimated by the fixed-ship theory.

The discrepancy increases as the depth-based Froude number approaches the upper limit
of steady subcritical flow, as this is when the sinkage and trim are large. In this case it
is no longer acceptable to use a theory in which the ship is considered vertically fixed.

The limiting Froude numbers for steady flow are also affected by allowing the ship to
squat. We studied the limiting Froude numbers first for a fixed ship, showing that they
depend only on the characteristics of one particular section. This “critical section” need
not be the largest section, especially when the beam/channel-width ratio is large. In that
case it may occur anywhere along the ship’s length, and will be in a different position for
supercritical flow than for subcritical flow. We compared the predicted limiting Froude
number for steady supercritical flow to that observed experimentally, showing that the
theory’s predictions were reasonably accurate.

For a ship that is free to squat, the entire ship has to be taken into account when
determining the limiting Froude numbers, as the overall sinkage must be determined as



part of the problem. Allowing the ship to squat significantly decreases the maximum
Froude number for steady subcritical flow, so that unsteady critical flow begins at a
lower Froude number.



Chapter 2

Steady Transcritical Squat in Open
Water

In this chapter we compute the sinkage and trim of a ship travelling in open water of
constant depth, with emphasis on the behaviour near the critical speed.

We shall use the same body-fixed coordinate system as in Chapter 1. In this case,
however, the water is of infinite lateral extent, with no side walls. We represent the
velocity field using the disturbance velocity potential ¢, such that the total flow velocity
is given by

aq=Ui+V¢.

We shall be extending two previously proposed methods: the shallow-water theory of
Mei (1976) and the finite-depth theory of Tuck & Taylor (1970). These, in turn, are an
improvement on the slender-body shallow-water theory of Tuck (1966).

2.1 Shallow-water theory and experimental results

Let us first consider a simple shallow-water theory (SWT), in which it is assumed that
the water depth is small compared to the ship’s length. Michell (1898) considered a
slender vertical-sided obstruction extending from bottom to top of a shallow stream of
depth h and infinite width. He showed that the small disturbance velocity potential ¢ is
independent of z, and satisfies the linearized equation of shallow water theory

This is the same equation that describes linearized aerodynamic flow past a thin airfoil
(see e.g. Newman 1977 p.375), with F}, replacing the Mach number.

For a slender ship of a general cross-section shape, Tuck (1966) solved the problem using
two regions: an “outer” region away from the ship and an “inner” region close to the
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ship. He showed that the outer disturbance potential ¢ was still independent of z and
satisfied the same equation (2.1). Tuck used the hull boundary condition to describe the
inner flow, before matching this to the outer flow; the matching required that the outer
potential ¢(X,y) must satisfy the boundary condition

US'(X)

oy(X,05) =+ o

(2.2)

Here, as in Chapter 1, S(X) is the ship’s submerged cross-section area (with an undis-
placed free surface) at station X. Note that due to the slenderness of the ship, the
matching states that the boundary condition is applied on y = 0. In the aerodynamic
analogy, the boundary condition (2.2) indicates that the ship behaves in the (X, y) hori-
zontal plane as if it were a symmetric thin airfoil of thickness S(X)/h. This thickness is
equal to the average of the ship’s cross-section thickness over the water depth.

There are also boundary conditions at infinity, essentially that the disturbance veloc-
ity V¢ vanishes in subcritical flow (F}, < 1), or else behaves like an outgoing wave in
supercritical flow (F}, > 1).

The solution of (2.1) is well known from aerodynamics for either fully subcritical flow
(where it is elliptic) or fully supercritical flow (where it is hyperbolic). In either case,
the solution has a singularity as F, — 1. In particular, the subcritical (positive upward)
vertical force is given by Tuck (1966) as

"(§) log | X — & dX d¢ (2.3)

7 = 'O—U2 / / B'(X)S
2mhy/1 — F?
with B(X) the local beam at station X. Here and subsequently the integrations are over
the wetted length of the ship, i.e. —f < X < /.

This force Z is usually negative, i.e. downward, and for a fore-aft symmetric ship, the
resulting midship sinkage is given hydrostatically by

5= <§> Cg T (2.4)

L? m

Here L is the ship’s length and A its displaced volume; the hull coefficient C is given by
L? , ,

= B'(X log | X — & dX dE . 2.5

Cs =~ | [ B(X) () log ¥ -] dX de (25)

Again, Aw = [*, B(X)dX is the ship’s waterplane area. The non-dimensional coefficient
Cs ~ 1.4 has been shown by Tuck & Taylor (1970) to be almost a universal constant,
depending only weakly on the ship’s hull shape.

From equation (2.4) we see that the sinkage appears to tend to infinity as Fj, — 1,
according to this linear dispersionless theory. However in practice the sinkage is finite,
reaching a maximum value at just below F} = 1 before becoming quite small thereafter.



Accurate full-scale experimental data for transcritical sinkage are scarce. However, ac-
cording to linear inviscid theory, the maximum sinkage is directly proportional to the
shiplength for a given shape of ship and depth-to-draught ratio (see §2.5). This means
that model experiments for maximum sinkage (e.g. Graff et al 1964) can be scaled propor-
tionally to length to yield full-scale results, provided the depth-to-draught ratio remains
the same.

For ships travelling in confined waterways, the width of the channel becomes increasingly
important around Fj, = 1, when the flow is unsteady and solitons are emitted forward
of the ship (see e.g. Wu & Wu 1982). Hence experiments performed in narrow channels
cannot be used to accurately predict maximum sinkage for ships in open water. The
experiments of Graff et al were done in a wide tank, approximately 36 times the model
beam, which should reasonably approximate open water. However, even with this ex-
treme tank width, reliable results were not given for h/T < 4.0, presumably because of
unsteadiness due to finite-width effects.

The magnitude of the maximum sinkage is considerable. For example, the Taylor Series
A3 model studied by Graff et al (1964) had a maximum sinkage of 0.89% of the shiplength
for the depth-to-draught ratio A/T" = 4.0. This corresponds to a midship sinkage of 1.88
metres for a 200 metre ship. Experiments on maximum squat were also performed by Du
& Millward (1991) using NPL round bilge series hulls. They obtained a maximum midship
sinkage of 1.4% of the shiplength for model 150B with A/T = 2.3. This corresponds to 2.8
metres midship sinkage for a 200 metre ship. Taking into account the fact that there is
usually a significant bow-up trim angle at the speed where the maximum sinkage occurs,
the downward displacement of the stern can be even greater, of the order of 4 metres or
more for a 200-metre long ship.

It is important to note that only ships that are capable of travelling at transcritical Froude
numbers will ever reach this maximum sinkage. Therefore, maximum sinkage predictions
will be less relevant for slower ships such as bulk carriers.

Most of the fast, non-planing monohulls or catamarans that regularly travel at transcrit-
ical speeds are comparatively slender. We can take advantage of this by using “slender-
body theory” to describe the flow, which assumes that the ship’s draught and maximum
beam are both small compared to its length. Both of the theories that we shall be
considering are slender-body theories.

The failing of the basic shallow-water theory (2.1) when F}, is close to 1 is principally
due to neglect of dispersive effects, which only become important in this Froude number
range. In this chapter we attempt to include these effects, in order to determine the
sinkage at transcritical Froude numbers. Special emphasis will be placed on predicting
the maximum sinkage, and results will be compared to the experimental results of Graff
et al (1964). These are still among the most thorough and precise results available on
transcritical sinkage and trim.



2.2 Modifying shallow-water theory

In the shallow-water equation (2.1), the flow is assumed to be steady in the body-fixed
frame of reference. This is a special case of a more general equation governing unsteady
linearized flow in constant depth (see Stoker 1957 p. 419). In earth-fixed coordinates
(x,y), it has the form

¢y = gh (¢ww + (byy) .

We can see that this equation is dispersionless in that it allows wave solutions for which
the wave speed is independent of wavelength. For example, one-dimensional wave solu-
tions travelling in the positive x—direction have the form

6= (2= /ght) |

so that these waves travel with constant speed y/gh and remain unchanged in form.

According to this dispersionless theory, there will be a resonance effect as the ship speed
approaches the wave speed \/gh. Since, according to this theory, any one-dimensional
wave can travel unchanged in form at a speed /gh, there is in effect no restoring force on
the free surface when the ship is travelling at this speed. The free surface, and therefore
the ship, could sink or rise indefinitely, resulting in an undefined sinkage.

In order to see the effect of dispersion, let us consider a one-dimensional wave travelling in
water of finite (not necessarily shallow) depth h. We shall here consider a pure harmonic
wave, which has a sinusoidal free surface profile. If this wave is to satisfy the Laplace

equation and free surface boundary conditions, its speed must satisfy (see Stoker 1957 p.

46)
2 = %tanh(kzh) . (2.6)

Here £ is the wave number, which is equal to 27 divided by the wavelength. We can see
that the speed of such a wave does depend on its wavelength.

An arbitrary one-dimensional travelling wave can be considered to be a linear super-
position of harmonic waves of varying wavelengths. Therefore any such wave will be
dispersive, as its components of differing wavelengths will travel at different speeds.

The shallow-water wave speed is found by taking the A — 0 limit of equation (2.6),
whereupon tanh(kh) — kh and ¢ — gh. Only in this limit is the wave speed indepen-
dent of k. For example, a more accurate shallow-water approximation uses the Taylor

expansion

tanh(kh) ~ kh — (k§)3
to give

&~ gh <1 — @) .

This gives us the leading dispersion correction term to the wave speed in shallow-water
theory. Although the correction is of higher order in the small quantity h, it becomes
vitally important when the ship speed approaches \/gh.



The transcritical shallow-water theory that we shall use includes this dispersion correction
to the wave speed. The derivation given here follows that of Mei (1976).

2.2.1 A general shallow-water derivation

We start by considering the equations governing steady potential flow in water of constant
depth. In body-fixed coordinates, we have the Laplace equation

Oxx + Gyy + 0. =0, (2.7)
subject to the wall condition on the sea floor

¢, =0 on z=—h. (2.8)
On the free surface we have the kinematic boundary condition

¢, = (U + ¢X)CX + ¢y<y onz=( (29)

as well as the Bernoulli condition
1
gC+ 5 (S5 + 0+ 1) +Ux =0  onz=¢. (2.10)
Since we are considering the “outer” flow far from the ship, we do not need the hull

boundary condition at this stage.

The shallow-water approximation for the outer low makes use of the fact that the vertical
length scale h is much smaller than the length scale L in the X and y directions. As we
shall see, this implies that the flow is two-dimensional to leading order.

In order to exploit this small—h assumption we scale the space dimensions by their typical
length scales. The scaled variables X,y, z are given by

X = X/L
y=y/L
z=z/h.

For convenience we shall also use the scaled free surface height (=¢ /h.

In terms of the new variables, and introducing the small parameter ;1 = h/L, equations
(2.7)—(2.10) now become

12 ($xx + byy) + ¢z = 0 (2.11)
¢,=0 onz=-1 (2.12)
% = (UL + qu)(.tx + qbygy on z = 5 (2.13)
~ 1 2 U 5
gh( + 312 (gbi + (153) + 2¢hz2 + ZQSX =0 onz=_(. (2.14)



In terms of F},, the scaled Bernoulli equation (2.14) may be written

- F2 ¢2 F2 ~

¢= T oU22 <¢X+¢ +N>_—¢X_0 onz=¢. (2.15)
It is assumed that although h is a small quantity, the ship speed U is such that Fj, =
U/+\/gh is of order 1, i.e. asymptotically independent of p.

The general solution of the scaled Laplace equation (2.11) subject to the boundary con-
dition (2.12) can be written using the small-y expansion introduced by Rayleigh:

b= —“—2( +1)°V?%p +“—4(z+1)4v4¢ + (2.16)
IR LT 0T ‘

Here ¢y = ¢o(X,y) only. The differential operator V? is equal to 0%/0X? + 0%/9y?, with
Vi =vV2V2.

We shall now substitute this expansion into the kinematic condition (2.13) and Bernoulli
equation (2.15) and neglect high order terms in the small quantity p. In addition, we will
use the slender-body approximation that the magnitude of the velocity potential ¢ is also
small when compared to standard potential dimensions UL. However, it is important
to note that at this stage the small quantities ;1 and ¢ are allowed to tend towards zero
independently.

The derivatives in equations (2.13) and (2.15) can be found using the Rayleigh expansion
(2.16) as follows:

¢Z|Z:<” == ( + C)V2q§0 + (1 -+ C)3V4¢0 =+ ..
% p
¢x|,—¢ = dox — 3(1 +{)°V?hox + — I (14 )"V ox + ..

Byloe = By — P (1 1 0Py + (11 Oy +

2 4!
Substituting these derivatives into the Bernoulli equation (2.15) we obtain

- F?

F?
¢= BT <¢0x + ¢oy) L <¢0x - —V ¢ox) + O(,u4¢, ,u2¢2) =0. (2.17)

The kinematic condition (2.13) becomes

| =,

—(1+ V¢ + (1+<) Vo +

5 P :
UL + ¢pox — 7(1 +0)*V2pox + - m (14 ¢)*V*¢ox + ) (x

12

¢0y - 7(1 + 5)2V2(/§0y

ut
4!

Il
AA&

— (14 )V + ) &



which, on substituting expression (2.17) to eliminate C, gives

F2 2
- (1 - U—}2¢0X> VQQS() + %V4¢0

Fi? 2 2 Fl% p? 2
= UL [—W (ff)ox + %y)x T UL <¢0xx - EV ¢0xx>]
+ dox Ly Poxx + oo _—F,f doxy + O(u' e, > %, ¢°)
UL YUL y ’ ’ )

Here we have included both the leading O(u?¢) dispersive terms and the leading O(¢?)
nonlinear terms.

Upon rearranging, we obtain

2F2 2
V2¢0 - F}? ¢0XX + K 9 h V2¢OXX - %V4¢0
F’% 2 2 2 4 2,2 .3
UL [(¢ox+¢0y)x+¢0xv do] + O(u'e, 1?¢*, ¢°) = 0. (2.18)

We can now use this expression for ¢, to find the depth-averaged potential ¢, defined by

. ¢
(1+0é= [ ¢dz.
Using the Rayleigh expansion (2.16) gives

(1+0)6 = do(1+0) — “;v%@ .

and hence )
6= b0 — L= V00 + O(u'6, w67 .
In order to insert this into equation (2.18), we solve for ¢, giving
$o = ¢+ %QV% +O0(u'd, 1*9%)
whereupon equation (2.18) becomes, in terms of the depth-averaged potential ¢:

_ _ 2F2 _
V2h — F2 dux + & TV

F2 ., _ L
_U_z [(6% + ¢3)x + 0x V2P| + O(u'6, 1i2¢%,6*) = 0 . (2.19)

Rearranging gives the approximation

212

- - F2 -
(1= F?)xx + dyy + . 3 : (Cbxxxx + beyyy)

2
_% (3€Z_5X($XX + (Z;Xq_syy + 2(Z_Syd_)Xy) ~0. (2-20)

This equation, which has an error of O(u*®, u?¢?, ¢), is quite general. As yet we have
made no assumption about F} except that it is asymptotically independent of y. Also,
no assumption has been made about the comparative sizes of y and ¢/U L.




2.2.2 Simplifying the equation

Let us now consider some simplifications of equation (2.20). Firstly, for any Fj, = O(1)
but not necessarily close to 1, the first two terms of (2.20) are dominant. The remaining
terms are O(u?¢, ¢*). Therefore if u? > ¢/UL we can neglect the nonlinear terms, and
the equation becomes

N T
( b )Oxx + dyy + 3 (¢xxxx+¢yyyy) ~ U

We note that this is the same as the shallow-water equation (2.1) but includes the leading-
order dispersive terms. This equation could be used as an improved shallow-water equa-
tion at arbitrary Fj,.

If u? < ¢/UL we can neglect the dispersive terms in (2.20), leading to the equation
(1= E)oxx + byy = 7 (30xux + dxdyy + 20y0x,) = 0.
This could be used to model the leading-order effect of nonlinearity at arbitrary Fj,.

Both of these differential equations are hard to solve. The linear equation can be solved
by Fourier transform, but it is more difficult than the simple linear equation that we shall
consider later. In addition, we already know that the simple shallow-water theory (2.1)
gives good results for sinkage when F}, is not close to 1, and all of the correction terms
in equation (2.20) become negligible in that case.

Therefore, we really only need to consider the correction terms that are important when
Fy, is close to 1. In order to study this, let us introduce the small quantity 3, defined by

B=1-F;.

In terms of (3, equation (2.20) can be written

2
Bxx + dyy + % (1-5) (szxxx + ﬁgyyyy)

— o (1= B) (30xdxx + dxdyy + 28y0x,) ~ 0, (2.21)
or, to leading order in (3,
— — 2 — —
ﬁ ¢XX + (byy + % ((bXXXX + (byyyy)
_% (3Q§X(EXX + &quyy + 2$yq_5Xy) + O(/BI'LQQS’ ﬁ¢2) ~0. (2-22)

The first thing that we notice about this equation is that, to leading order,

by =~ 0.



This means that near the critical speed the flow is nearly independent of y, i.e. one-
dimensional in the X—direction. This means that changes in the y—direction are insignif-
icant compared to changes in the X—direction. Specifically, we can see from equation
(2.22) that

0? 9 0?
— = — . 2.2
57 = 0.1, 0) (2.23)
For moderately small 3, we have
0? 0?
while for very small (3,
82 _ ) 82
oy ( ﬁ)m :
In any case, when (3 is small
0? 0?
o < o

Therefore, the transcritical form of equation (2.21) is

2

_ _ _ 3 _
Boxx + by + %¢xxxx - ﬁdsx(ﬁxx ~0.

In original unscaled variables, and letting ¢ be an approximation to the depth-averaged
potential ¢, we have the equation

1 3
(1 - Fl%) Oxx + Gyy + §h2¢XXXX - ﬁ¢X¢XX =0, (2.24)

which was obtained by Mei (1976).

2.2.3 Dispersive or nonlinear theory?

Equation (2.24) has a wide range of validity, as it includes the leading order dispersive and
nonlinear terms. It is a two-dimensional generalization of the one-dimensional Korteweg-
deVries equation, which is known to work well for problems in which dispersion and
nonlinearity are both important.

This two-dimensional version, however, is difficult to solve numerically in water of infinite
lateral extent. Here we seek to gauge the relative importance of the dispersive and
nonlinear terms, in order to see under which conditions either of them may be neglected.

Looking at the order of magnitude of the dispersive term in equation (2.24), we can write

2
Wbxxxx =0 ((%) %") -

while the nonlinear term has order

2
2 xbxx =0 ((%) ) =



Comparing these, we can see that the nonlinear term may be neglected if

¢x/U < (h/L)? (2.25)
while the dispersive term may be neglected if

éx/U > (h/L)*. (2.26)

These conditions are equivalent to the ¢/UL — p? comparisons made in §2.2.2.

Therefore, the relative importance of dispersion and nonlinearity depends on the size
of the disturbance velocity in the X —direction. If the disturbance velocity is large,
nonlinearity is more important, while if the disturbance velocity is small, dispersion is
more important.

The size of the disturbance velocity is governed in part by the hull boundary condition.
Matching the outer flow with an inner flow near the ship’s hull as done by Tuck (1966)
yields the boundary condition (2.2) for the outer potential ¢. From this we can assess
the magnitude of the velocity component in the y—direction:

b _ o (S'(X)> _0 (Smax) (2.27)

U 2h Lh

where S, 1S the maximum hull section area.

When F), is close to 1, the velocity component in the X —direction is of a different
magnitude to that in the y—direction. We saw in §2.2.2 that in this case the flow is
nearly one-dimensional, such that ¢, < ¢x. Specifically, from the relation (2.23) we

have 52 5 o2
i 2 ¥X
2 O(ﬁ,u, U) o

Here we have returned to unscaled coordinates and used the fact that ¢ was considered
scaled with respect to the standard potential UL.

Since it is the maximum of 3, u? and ¢x /U that governs the ordering, we shall write this
0’ s x| 0°
8—y2 ~ max { 3, u°, T [ ax2

where “~” means “is of the same order as”.

as

The velocity component ¢, is therefore smaller than ¢x by a factor

¢y ~ max {ﬁ%,,u’a (%) 2 } ¢X : (228)
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When F}, is very close to 1

Let us consider the case when F}, is very close to 1, such that [ is not greater than both
p? and ¢x/U. Equation (2.28) then states that ¢, is of the order

B o ¢_x<¢_x>%
U Fo\T '

We shall now use this along with the condition (2.27) to find the magnitude of ¢x/U.

Substituting for ¢, gives
3
S o L (0x)
Lh U’'\U '
Inverting this gives the magnitude of ¢x/U:
¢X . 1 Smax (Smax)%
— ~ — . 2.2
TR PR (2:29)
Firstly, let us consider the case when
ox (Sm)
U Lh

which corresponds to the nonlinear term in (2.24) being more important. The conditions
for this to occur are that

(Smax>% o 15
Lh u Lh

Swax _ (1)
12 ><E> : (2.30)

Substituting ¢x /U into the condition (2.26) tells us that dispersion may be neglected if

Smax\® o
(Lh) >

Simax h\?
e > (Z) (2.31)

which is of the same form as condition (2.30). Therefore if condition (2.31) is satisfied,
with F}, very close to 1 (i.e. 8 < p? and 8 < ¢x/U) we may neglect the dispersive term
in our governing equation (2.24).

from (2.29). This simplifies to

Rearranging this gives

Now let us return to the relation (2.29) and consider the case when

QS_X lSmaX
U u Lh




which corresponds to the dispersive term in (2.24) being more important. The conditions
for this to occur are that

1 Smax _ (Sm)g
u Lh Lh

Swax (R
% <<E> : (2.32)

Substituting ¢x /U into the condition (2.25) tells us that nonlinearity may be neglected
if

from (2.29). This simplifies to

Stax 2
PRTI
Rearranging this gives
S < <ﬁ>2 (2.33)
h? L

which, again, is of the same form as condition (2.32). Therefore if condition (2.33) is
satisfied, with F}, very close to 1, we may neglect the nonlinear term in our governing
equation (2.24).

When Fj, is moderately close to 1

If F}, is not in the immediate vicinity of 1, so that 8 > p? and 3 > ¢x /U, we have from
the relation (2.28) that

¢y 10x
v
Substituting for ¢, using equation (2.27) tells us that
Smax 1 ¢X
h "~ T
so that ¢x /U has magnitude
¢X 1 Smax
v~

From this we see that ¢x/U and therefore the nonlinear term in (2.24) increase in mag-
nitude as § — 0.

Using the condition (2.26) we can see that the dispersive term in (2.24) can be neglected
if

< Bis (2.34)



This analysis is still valid when = O(1). In that case we need

Smax _ h
<7 (2.35)

for the nonlinear term to be neglected, which is less restrictive than the condition (2.33).
Provided that the condition (2.35) is satisfied, nonlinearity can be neglected whenever

> (Y

from condition (2.34).

As 8 — 0 the nonlinear term increases in magnitude and the condition for nonlinearity
to be neglected tends towards (2.33).

2.2.4 The linear transcritical equation

The nonlinear but dispersionless form of equation (2.24), namely

(1 - F;f) Oxx + Gyy — %stfﬁxx =0. (2.36)

was studied by Lea & Feldman (1972). They used local linearization to approximately
solve the equation, and gave results for the trim and bow sinkage of a spheroidal hull
in open water. Results were found for 0.8 < Fj, < 1.2. As there were no experimental
results available for this simplified hull shape, it is difficult to judge the accuracy of the
theory. However, in the plot of trim as a function of Fj,, we do not witness the peak at
F, ~ 1 that was consistently present in the experimental results of Graff et al (1964). It
is difficult to gauge the form of the midship sinkage, since bow sinkage was plotted by
Lea & Feldman, which includes the effect of trim.

Trim and bow sinkage were found for the same hull as was considered by Graff et al
(1964) at the exact critical Froude number Fj, = 1. These were claimed to be similar
to the experimental results, although it was not stated which value of h/L was being
considered.

Further solutions of this nonlinear but non-dispersive equation were obtained by Ang
(1993). He considered steady flow past a ship in a channel, and therefore found that no
solution existed when Fj, was close to 1. Although the nonlinear flow in a channel can
be solved using finite-difference methods, this method is difficult to apply in open water
because of the large y—domain needed when F}, is close to 1.

In §2.2.3 we found conditions under which the nonlinear term was of much smaller order
than the dispersive term in equation (2.24). In summary, this was true if

Smax _ h

2 ST




when 3 = O(1), or
Smax _ a1 h
h? L
for small 3 such that 3 > p? and 8 > ¢x/U. When F, is very close to 1, nonlinearity

could only be neglected if
Sma (B
h? L)

All of these conditions are quite restrictive for practical ships, and it could be said that

< 32

it is hard to justify neglecting the nonlinear term in (2.24). However, in this Chapter we
shall be doing just that, for the following reasons:

* Nonlinearity is usually included in one-dimensional KdV equations by necessity, as a
steepening agent to provide a balance to the broadening effect of the dispersive term in
dxxxx- However, here there is an adequate balance instead with the two-dimensional
term in ¢y,.

* We saw from the conditions above that nonlinearity becomes less important away from
F, = 1. Our most important reason for studying transcritical flow is to determine the
maximum sinkage, which occurs at Fj, ~ 0.9. The actual flow in the immediate vicinity
of Fj, = 1 is relatively unimportant, as we know from experiment that the sinkage is
small in this region.

* It is mainly dispersion that is responsible for limiting the subcritical sinkage; nonlinearity
tends to steepen unidirectional waves and leads to breaking unless limited by dispersion
in one dimension. However, such steepening effects are of less concern in fully two-
dimensional situations where this breaking either does not occur at all, or occurs only
in a small region of the (X, y) plane. This is particularly so in water of infinite width
as assumed here.

*In finite-width channels, disturbances are larger, transcritical effects are amplified and
the flow is more nearly unidirectional. In this case nonlinearity is necessary to describe
the flow, as it predicts the onset of unsteadiness and production of solitons. In water of
infinite width, no solitons are produced and the flow is steady, so nonlinearity is of less
importance.

*The full nonlinear equation (2.24) is difficult and expensive to solve in two dimensions
for open water. We wish to be able to provide results over a wide range of Froude
numbers, which does not seem feasible using an accurate nonlinear method.

* We have shown that the linear theory is valid for very slender ships. As in other physical
problems, it may be true that the linear theory gives good results outside of its expected
range of validity. We will see when comparing results to experimental values that this
is indeed the case here for predictions of maximum sinkage.

Therefore, by neglecting the nonlinear term in equation (2.24), we only need solve the
linear equation

Poxx + by + 70xxxx =0 (2.37)



where we have defined the constant v = h?/3. This is to be solved subject to the same
boundary condition (2.2), and will hereafter be referred to as transcritical shallow-water
theory (TSWT).

This equation was suggested by Mei (1976) who used it to calculate the resistance of a
slender ship at transcritical speeds.

2.3 Transcritical shallow-water theory (TSWT)

Here we solve the transcritical shallow-water equation and show how sinkage and trim
can be calculated for a hull of general shape. We then consider the special case of fore-aft
symmetric hulls, which gives us a good analytical insight into the nature of the solution.
It is then briefly shown how the linear dispersive method can be extended to channels of
finite width.

2.3.1 Solution by Fourier transform

The TSWT equation (2.37) can be solved for the potential ¢ by Fourier transform.
Because of the symmetry of the problem, we shall here consider the region y > 0, with
the solution being mirrored for y < 0. Using the Fourier transform

U(k,y) = /Oo ¢ (X,y) " dX

—0o0

and taking the transform of the partial differential equation (2.37), we obtain
—BE*V + Wy, + 7k =0 . (2.38)

This can be written as
U, = AU (2.39)
with A\? = Bk? — vk*. X may be either pure real or pure imaginary.

Equation (2.39) has the general solution
U =C(k)e ™ + D(k)e* . (2.40)

The boundary condition for ¢ as X,y — oo states that ¢ must either tend towards zero
or behave like an outgoing wave. In either case it must be bounded. Therefore as y — oo
the Fourier transform ¥(k,y) must also be bounded.

If A2 > 0, this will only be true if the coefficient of e*¥is zero. Therefore when A2 > 0
we can write

U =C(k)e (2.41)

with )\ defined as the positive square root of A2 in this case, i.e.

A=/Bk2—yk*  for Bk —vk* > 0. (2.42)



When \? < 0, ) is imaginary and equation (2.40) represents two wave-like solutions for
V. Only one of these will represent outgoing rather than incoming waves. Without loss
of generality we can represent ¥ using equation (2.41), and then choose the sign of A in
order to satisfy the “outgoing wave” radiation condition.

In this case, letting A\ = i, where a = £+/vk* — Bk?, gives the solution
U = C(k)e™ |

Taking the inverse transform then gives the corresponding solution for ¢:

1 0 . .
é / C(k)e e *X g, |

")

In terms of earth-fixed coordinates (z,y), where x = X — Ut, this reads
¢ — i /oo C«(k,)efikwefia(y+%t)dk )
21 J—c0
In order that this represents only outgoing waves in the y—direction, the sign of o must

be opposite to that of k.

Combining this result with (2.42), we can define X for all values of k, 3, as follows:

VPBk? — ~k* for Bk? — vk* >0
A=< —iv/vk% — Bk? for  Bk?—~vk*<0and k>0 (2.43)
+iv/ykt — Bk? for  Bk*—~vk*<0and k<O0.

At subcritical Froude numbers, when (3 > 0, this becomes

Bk* —k for  —\/B/y <k <\/B]y
A=< —i/vk* — Bk? for  k>./B/v (2.44)
+iv/yk* — k2 for k< —+/B/v,

whereas at supercritical Froude numbers, with 3 < 0, A is given by

\ = —i/vk* — Bk? for k>0 (2.45)
| ikt — Bk? for k<0. '

With these definitions for A, the solution for ¥ is universally represented by equation
(2.41).

We can now apply the boundary condition (2.2) which comes from matching with the
inner solution. For y > 0 this reads

US'"(X)
Taking the Fourier transform yields
kS (k
w, (k,0) = - ZFE) (2.46)

2h



where S(k) is the Fourier transform of S(X), i.e.
_ ¢ )
S(k) = / S(X)eXax

Matching the derivative of equation (2.41) to the condition (2.46) determines C(k):

_ UikS’(k)
—-\C (k) = ——an
Therefore the solution for ¥ is
UikS’(k) 0
U=—"~"‘¢e "V, 2.4
2 © (247)

Taking the inverse transform of this gives us the velocity potential ¢:

Ui [ kS(k) _,, _;
?(X,y) = yrll B %e M e~k X df; (2.48)

where ) is defined by equations (2.44) and (2.45). For subcritical flow, the integrand
in (2.48) has singularities at k¥ = +,/3/~y. However, as the integrand behaves like

1/1/k F B/~ near these singularities, they are integrable.

2.3.2 Pressure, forces, and squat

Since the TSWT is a linear theory, we shall use the fixed-ship method to solve for sinkage
and trim, as described in Chapter 1. This states that the flow field can be solved with
the ship in its rest position rather than in its (as yet unknown) squatted position. To
do this we shall introduce the “hydrodynamic” pressure p, which is the pressure excess
above hydrostatic

p=P+ pgz.

From Bernoulli’s equation for the leading term ¢(X,y)

p 1 2 2_12
p+2(U+¢X) +¢y—2U ;

the hydrodynamic pressure is given by

p=—pUdx (2.49)

to leading order. Matching with the inner flow (Tuck 1966) gives the leading order
pressure on the hull as

p=—pU¢xly=0 , (2.50)

so that p is a function of X only. Once this pressure is known we can find the upward
force Z and trim moment M on the ship’s hull. The upward force is given as in Chapter
1 by

¢
Z=—pgA+// _PdSi,



submerged part of the hull up to the free surface z = (. In linearized flow this free surface
height is small; in addition, the hull walls are almost vertical at the waterline, meaning
that the pressure produces little upward force near the waterline. If the hull walls make
a small angle w with the vertical, the vertical force can be linearized to

Z = —pgA + //0 —PdS.i+ O(PCw) .

undisturbed free surface level z = 0, which will simplify the equation. Since P is of the
same asymptotic order as (, the error is second order even for w = O(1), and can be
neglected. Therefore in terms of the hydrodynamic pressure, the vertical force is given
by

0
Z = —pgA+ // (—p(X) + pgz) dS.z
= —pgA+ ]{ (=p(X) + pgz) dS.z — / / (=p(X) + pg2),—, dydX
0
= —pgA+///&(—p(X)+p92) dV+//zi0p(X)dde
using the divergence theorem. The volume integral is evaluated over that part of the hull
lying beneath z = 0, with the volume element dV = dX dydz.
This expression reduces to
¢
7 = / p(X)B(X)dX . (2.51)
¢

Since the upward force on any thin cross-sectional slice of thickness dX at station X is
dZ = p(X)B(X) dX, the bow-up trim moment

l
M:—/ X dz
—L

is given by
4
M=— /ZXp(X)B(X)dX . (2.52)

Substituting the expression (2.48) for ¢ into equation (2.50) for the hydrodynamic pres-
sure p, we obtain

pU?% . /00 k%S (k)
PY Folr)

_ Ay —ikX
Amh y1_1>r(1) —xo A € ¢ dk .

p(X) =

The upward force Z on the ship as given by expression (2.51) is now

pU? oo k2 _
—— —S(k)B* . .
e [ S8 B (k) (2.53)

Similarly the bow-up trim moment becomes

pU? oo k2 .
M=— — XB . 2.54
P [ K5 XB (b (250




In these two expressions we have introduced the Fourier transforms of B(X) and X B(X),
namely

Blk) = /_ 1 B(X)e*Xdx

sv
—
=

|

XB [ 1 XB(X)e*¥dX . (2.55)

In each case an asterisk denotes the complex conjugate.

Mei (1976) expressed the transcritical force in a form similar to (2.3), where the logarithm
is replaced by a kernel involving Bessel and Struve functions. He did not attempt to
calculate it numerically. Here we prefer to use the Fourier-transformed version (2.53) for
computational purposes.

We note using the identity
1
5 /_ k|5 (k) //B £)log | X — €| dX de (2.56)

that the TSWT vertical force (2.53) agrees with the SWT result (2.3) in the limit as
v — 0, i.e. when transcritical dispersion effects are negligible. In performing this limit,
we must scale 7y using the ship’s length L, so that we are in essence taking the limit as
h/L — 0. Similarly the trim moment (2.54), and therefore actual sinkage and trim, all
agree with SWT in the limit h/L — 0.

Once the vertical force and trim moment are known, we can solve for sinkage and trim
in a similar manner to that of Chapter 1, using the equilibrium equations

Z+pg/_i{s+X0}B(X)dX — 0
M—pg/_iX{s—l—XH}B(X)dX - 0. (2.57)

These can be solved simultaneously for the (downward) midship sinkage s and bow-up
trim angle 6:

1 {MWM+IWZ}
§ = — —
1 [AwM + MwZ
p = - |owiHw (2.58)

As in Chapter 1, the hull parameters Aw, My, Iy are defined as
‘
Ay = / B(X)dX

Y/
My = /_ZXB(X)dX

¥/
Iy = /XQBX dx
—L

(2.59)



2.3.3 Numerical method

In order to calculate the integrals (2.53) and (2.54) for a general hull shape, we discretize
the k—variable into the discrete values k; = j ¢, for integer values of j. The Fourier
transforms S(k), B(k) and X B(k) are evaluated at these points k; using Filon quadrature
(see e.g. Abramowitz & Stegun p. 890). This is a method for taking Fourier transforms
whereby the original function is approximated by a parabola over each pair of subintervals,
using the functional values at the three discrete points k;. The transform of this parabola
is taken exactly, so that the method is accurate even when £ is large and the integrand
is highly oscillatory.

Although for clarity we have not introduced scaled variables here, in the computations
B(X) and S(X) were scaled with respect to their maximum values; distances in the X —
direction were scaled with respect to the shiplength L; and as a consequence k was scaled
with respect to 1/L. The range of scaled k—values was chosen to be [-100,100] for the
computations; because of the linearity this was independent of ship dimensions. In both
integrals, k?/\ is bounded for large k, while S(k), B(k) and X B(k) all tend rapidly to
zero for large k. For all Froude numbers the integrands were negligible for scaled values of
|k| > 60. Redoing the calculations with a scaled &k range of [-1000,1000] made negligible
difference to Z or M.

The step size used in the scaled variable was d;, = 0.1, except in the special cases which
we shall discuss. Redoing the calculations with §;, = 0.01 made negligible difference to Z
or M.

The integrals (2.53) and (2.54) are treated differently depending on whether F}, is greater
than or less than 1. We shall describe each case separately.

Supercritical

When 3 < 0, A is given by equation (2.45) and the integrands in (2.53) and (2.54) are
non-singular. Therefore we can evaluate them simply using Simpson’s method. This
approximates the integrand by a parabola over each pair of subintervals, using the value
of the integrand at the three discrete points k;. This parabola is then integrated exactly
over each pair of subintervals.

Adding up all of these contributions yields the expression

,0U2 N kJQ _ _
= —— L S(k:)B*(k;) 6y . 2.
47Th j:_Nw])\jS( ]) ( ]) k ( 60)

Here we have defined the total number of subintervals as 2N. If we choose N to be even,
the weights w; are 4/3 when j is odd and 2/3 when j is even; at the endpoints j = N,

A similar expression is used for the moment M, with B being replaced by —X B.



a

Subcritical

When § > 0, A is given by equation (2.44); we see that A = 0 when k£ = +,/6/7.
Therefore the integrands in (2.53) and (2.54) have singularities at these points, which
must be treated carefully.

As previously stated, these singularities are integrable. Therefore we shall integrate the
singular part of the integral exactly in the vicinity of the singularities.

Firstly, we choose our step size 5 so that both singularities lie at discrete points k;. The

number of subintervals in [0,/3/7] is defined as Ni, while for k£ > /3/~ there are N,
subintervals. Similar partitions exist for £ < 0. For simplicity we shall make both N;
and N, even integers.

When +/3/ is large, we can make d; =~ 0.1 by choosing N; to be the closest even integer
0 1/B3/v/0.1. The step size is then

B/ _

0 =
k N1

To keep an approximate k—range of [-100,100] we choose in this case

Ny =1000 — Ny .

B/~ is small, we need a smaller step size in the range |k| < 1//3/7, where the integrand
changes rapidly. We choose

N; =10 for \/B/v<1.0

so that

B/

N
again. In order to keep the approximate k—range of [-100,100] we choose N as the closest
even integer to (100/dy) here.

5 =

We now break up the integral (2.53) into different parts on each side of the singularities.
When £ is within two gridpoints of the singularities, we integrate the singular part ex-
actly; otherwise, we use Simpson’s rule as we did for supercritical Froude numbers. The
expression (2.53) for Z is written

pUP [ M g
Z= - ~35(k;) B (k;)
47Th %]\&w])\j ( ]) ( ]) k
\/ﬁ/ k2
+ )dk

B/7=26 1/ 7k (K ﬂ/v
/ B/r+20, |2 Ni-2 kf.

S dk
S e W 3 e,

S(kj)B* (k;) O



1 _ _
/ e f T ﬂ/y_kg S(k)B* (k) dk

\/B/1+26 k? Ni1+N»> kQ
T k)B*(k)dk+ 3 wj)\]S(k) (kj)ak}.

VB TR (K ﬂ/v j=Ni+2

As in the supercritical case, w; is equal to 4/3 when j is odd, 2/3 when j is even and 1/3
at the end points of each summation interval.

In order to evaluate the integrals near the singularities, we use the indefinite integrals

/ﬁdk: vk =By
/ 7hdk=—\/ﬁ/v—kz

and approximate S(k)B*(k) by a constant over each small interval, equal to its value at
the centre of that interval. We can now evaluate the integrals to yield

U2 —N1—-2 kZ
Z= = T2 wySh)B k),
S(mﬁnB (kwi ) [ gV
—JEk2 —
- iy [ bl ﬂ—ﬁ—m

Sf B B* B _\/M‘FQJ - ks _ —
L Slhonis)B (ki) [V~ #] Y w (k) B () 6
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S
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A similar expression is used to compute M, with B replaced by —XB. Once Z and M
are computed, the sinkage and trim are found from equation (2.58).

2.3.4 Symmetric hulls

Let us illustrate analytically some properties of the transcritical shallow-water theory,
by considering the special case of ships with fore-aft symmetry. In that case, B(X) and
S(X) are both even functions of X. Since

_ L Y]
B(k) = [ B(X) cos(kX) dX +i [ B(X) sin(kX) dX ,

and similarly for S(k), the imaginary parts of B(k) and S(k) vanish. As such, the star
is unnecessary in equation (2.54). In addition, the real-valued B(k) and S(k) are even
functions of k.

On the other hand, X B(X) is odd in X, so that X B(k) is pure imaginary and odd in
k. In addition to these simplifications to the force and moment expressions (2.53) and
(2.54), the hydrostatic coupling between sinkage and trim vanishes for fore-aft symmetry.
In this case the expressions (2.58) become

S _— _L
pgAw
M
f = —— . 2.61
pglw (2:61)

We shall now look at the simplified sinkage and trim for supercritical and subcritical flow.

Supercritical

At supercritical Froude numbers, A as given by equation (2.45) is odd in k. Therefore
the integrand of the force integral (2.53) is also odd in k, and Z vanishes. Using equa-
tion (2.61), the supercritical sinkage is thus identically zero for fore-aft symmetric hulls.
Although this result is not quite true for non-symmetric hulls, we shall see that the
theory still predicts a very small supercritical sinkage. This is in agreement with the sim-
ple shallow-water theory (SWT) described in §2.1, which also predicts zero supercritical
sinkage for fore-aft symmetric hulls.

The integrand in the moment expression (2.54) is even in k, so that we can write
pU? ik
2rh Vk? —

whereupon the trim angle 6 is glven from equatlon (2.61) by

M= = S(k)XB(k)dk (2.62)

%IW / \/_ S(k)XB(k)dk . (2.63)

This amounts to a significant bow-up trim in the supercritical Froude number range, in
agreement with SW'T. Here, however, the trim is finite as Fj, — 1.




Subcritical

When § > 0, A is given by equation (2.44). We see that ) is even in k for |k| < 4/3/7 and
odd in k for |k| > 1/3/7. Therefore the force integrand (2.53) is also even for |k| < /3/v
and odd for |k| > \/B/7, so that it reduces to

pU? \/M koo
. TSR Bk) dk (2.64)

Using the relation (2.61), the sinkage is given by

F2 B kL
Ty WS(/ﬂ)B(lﬁ)dk. (2.65)

7 = —

S =

This force is non-singular as # — 0. In fact, we can show how it behaves asymptotically
as — 0:

1 VBl kL
~N— ——5(k)B(k) dk
27TAW\/’7/0 /B/~ — k? S
. 5050 / ko
21 Aw /7 Jo /B~ — k2
LN éﬂm
QWAwﬁ 0
Ay [B
N
A 1— F?
=

We see that the subcritical sinkage tends towards zero in a square-root manner as Fj, — 1.

The moment integrand in equation (2.54) is odd for |k| < /3/v and even for |k| > +/3/7,
so that the trim moment reduces to

_ 7

~ 2mh /\/ﬁ W S(k)XB(k) dk (2.66)
giving a trim angle
N 27rIW /\/[7 W S(k)XB(k) dk . (2.67)

The subcritical trim is non-zero according to this theory; it increases as 8 — 0 but
remains finite. As v — 0 the trim tends towards zero at all subcritical Froude numbers,
in accordance with SWT.



2.3.5 Finite-width channel

We now solve the TSWT equation (2.37) for a ship moving along the centre of a channel.
We expect that the steady linear theory will be of limited validity in this case, because
it is well known that unsteady effects are important in finite-width channels. In fact, as
we saw in Chapter 1, it is only by including nonlinearity that the onset of unsteadiness
can be predicted; this linear theory will furnish a steady solution even when F}, is close
to 1.

For Froude numbers not too close to 1, or in wide channels, the flow is still steady and
this theory could be used. When the true flow is unsteady, the theory would serve only
as an approximation to the time-averaged unsteady flow.

As we shall see, although the resulting equations are simple, their solution is extremely
difficult. We put this theory forward mainly for mathematical interest rather than prac-
tical use.

Fourier transform solution

As was done in §2.3.1, we solve the problem by Fourier transform. The same equation
(2.39) for the transformed variable U applies, except that the boundary condition as
ly| = oo is here replaced by a wall boundary condition on the channel walls y = +w/2.
Again, we shall solve the flow in the region y > 0, with the solution being mirrored for
y <0.
The wall boundary condition is

Pyly=w/2 =0

which, on taking the Fourier transform, becomes
Uy ly=w/2 = 0. (2.68)

The general solution of equation (2.39) can be written in the form

¥ = () (k) cosh {/\ (y - %)} + D; (k) sinh {/\ (y - %)} .

Applying the boundary condition (2.68) requires that D;(k) = 0. Therefore

¥ = C; (k) cosh {)\ (y - %)} . (2.69)
Since we are considering a finite domain in the y—direction, there is no need for a radiation
condition in this direction. As such, we can choose A to be either ++/8k? — vk%. We can
see from the solution (2.69), which is even in A, that the sign of A is irrelevant even when
A is imaginary. We shall see later that a radiation condition must instead be applied in
the X —direction for this case of a ship in a channel.



In order to determine C(k) we use the same transformed hull boundary condition (2.46),

which becomes \ U'kS’(k)
) w 7
)\Cl(k) sinh {—7} = —T .

Using this in equation (2.69), the solution for ¥ is

UikS (k
= _UtkS(h) cosh {)\ (y - E)} : (2.70)
2hAsinh {22 } 2
Taking the inverse transform gives the velocity potential ¢:
Ui [~  kS(k) w kX
o =—" 7cosh{/\<y——)}e“ dk . 2.71
4h J oo \sinh {22} 2 (2.71)

The hull pressure as given by equation (2.50) has the form

k2 A .
p= 47rh y—>0 / co th { Qw} e e kX dk . (2.72)

The upward force and bow-up trim moment are now given from equations (2.51) and
(2.52) as

_pU? > K Aw _
- © coth B
Z el Y cot > S(k)B*(k)dk
/oU2 k2 Aw .
= h XB . 2.
M il e cot 5 S(k) (k)dk (2.73)

We see that these differ from the open-water expressions (2.53) and (2.54) only by the
factor of coth(Aw/2) in the integrand. However, this factor has a profound effect on the
form of the integrand.

In the subcritical case, A is real for |k| < 4/3/7 and the integrand is non-singular, as it is

for open water. However, the singularity at |k| = y/(/7 is now of a different form, since
coth(Aw/2) is also singular at this point. As |k| — 1/3/v, A — 0, so that

1
Ow/2)

coth(Aw/2) —

and

A 2 w2

oy (k) (k= \f5)

This result applies whether \ is real or imaginary, i.e. whether |k| is less than or greater
than (/(3/~. Therefore this point is a simple pole.

k2 { Aw } 2k?
— coth - —

(2.74)



When A is imaginary, further singularities exist whenever Aw/2 = nz for integer values
of n. This is true for both subcritical and supercritical flow. Rearranging using \? =
Bk? — vk* tells us that these occur at the points k,, defined by

B 4n3m2y :
ol (1+y1+ Kl ) i B>0 (2.75)

The case n = 0 corresponds in the subcritical case to the double point ky = +4/6/7,
while in the supercritical case it corresponds to ky = 0.

To see the form of the singularities for arbitrary n (excluding n = 0 for 8 > 0, which we

have already considered), we let A = ic, where « is real. Using coth(ia) = —icot(a),
this gives

k? Aw k? ow

—coth { — :——cot{—} .

A 2 Q 2

The singularities occur at «,, = 2n7/w; we can expand in a Taylor series around these

points to give
tan {%} ~ tan {agw} + %sec2 {agw} (a—ay)

= g(a—an)

so that

k2 Aw 2k? 1
—coth{ — % ~ — 2.76
/\COt {2} woy, o — o ( )

when « is close to a,.
Also, since o = vk* — Bk?, we have
ada = (2715’ - ﬂk) dk

so that, around «,,,
o (0 = an) ~ (29K3 = k) (k — k) .
Therefore, from the relation (2.76), we have

k? w 2k2 1
—coth{ — % ~ — n 2.
X { 2 } w (27kE — Bkn) k— Fn (277)

near each singularity k,. 2vk> — Bk, can only equal zero when |k| = 3/(27), which is
outside the range of A\ being imaginary for either subcritical or supercritical flow. The
point ky = 0, for supercritical flow, is non-singular because of the factor of k? in the
numerator. Therefore all of the singularities at the points given by expression (2.75) are
stmple poles.

The path of integration in the complex k—plane must pass around all of these poles,
and it is in deciding which way to pass around the poles that the radiation condition
is used. This is contrary to the open-water case, in which the two singularities were of



inverse-square-root type. In that case it did not matter whether the path of integration
passed above or below the singularities, as the arc integral is zero and we only needed to
evaluate the Cauchy principal value part of the integral.

When the path of integration in the complex k—plane passes either above or below a
pole, k has either a positive or a negative imaginary part respectively. Suppose in this
case

Then, looking at the velocity potential (2.71), we can see that he sign of k; will influence
the behaviour as X — —oo. Specifically, the e *X term now has the form

—itkX _ —tkr X ki X

€ € €

The radiation condition used here is that there should be no disturbance as X — —oo;
therefore we must choose k; > 0, so that the path of integration must pass above the
poles in the complex k—plane. This applies whether £ is positive or negative.

The force and moment expressions (2.73) must therefore each be evaluated as a Cauchy
principal value integral plus a sum of arc integrals passing above each of the singularities.
Looking specifically at the upward force Z, the sum of arc integrals has the form

_ZTUZ S S(ky)B* (kn)- (=) res ("; coth{%w} ;kn> .

For subcritical flow, the residue at the double point n =0 (i.e. £k = +4/3/7 is evaluated
using the relation (2.74) to be
4
————sgnk.

WP

For all of the other points £, we can use the expression (2.77) to find the residues, giving

2k2
w (2")/16;9’1 - ﬂkn) .

The sum of arc integrals for supercritical flow now has the form

pU?% 2 . 2k?
B n
a2 S B ) e s

where the points k, are given by equation (2.75). In the subcritical case we must add

the contributions around k = +/(/7, namely

" [S(—\/%B*(— 5 -5/ D) -

In calculating the trim moment M, we replace B by —X B in the above expressions.

Summing up these residues for a ship of general shape is relatively straightforward, as they
die away to zero quite quickly as |k| increases. In the special case of fore-aft symmetric



hulls, where S(k) and B(k) are real and even in k, the residues are odd in k and their
sum is zero.

However, numerical evaluation of the Cauchy principal value part of (2.73) is complicated,
due to the infinite number of unequally spaced poles. Even for symmetric hulls there is no
cancellation for |k| > ME the integrand in that case is even in k, whereas in open water
(§2.3.4) it is odd. The integration over a small region either side of each singularity can
be handled analytically, and we shall do this in Appendix B.2. However, the difficulty in
separately computing the integral over each non-singular region deterred us from giving
numerical results for this theory.

2.4 Finite-depth theory (FDT)

The TSWTT just described is a shallow-water theory which includes the dispersive term
of leading order in the small quantity h/L.

We shall now look at a theory which is fully-dispersive; that is, no assumption about
shallowness is made whatsoever. As such, the variation of linear wave speed with wave-
length and water depth is exact according to this theory. It is equally valid for any depth
of water, even in the limit of infinite depth.

The method was introduced by Tuck & Taylor (1970), who derived the basic formulae
that we shall reproduce here. Because of the complexity of the resulting integrals, they
only gave limited numerical results for symmetric hulls. Here we study the integrals in
more detail and use the theory to predict the midship sinkage of a ship of general shape.

2.4.1 The original equations

Tuck & Taylor considered the linearized flow around a slender ship moving in an arbitrary
depth of water. They found that the vertical force and trim moment are each the sum
of two components, i.e.

Z = Zy+2Zy4
M = Mg+ M,;. (2.78)

Here Z,, and M, are the force and moment on the lower half of an equivalent double
body in an unbounded fluid; Z; and M, are a correction due to the finite depth of water.

In Appendix B.3 and with numerical results we show that the corrections Z; and M,
tend to the TSWT expressions (2.53) and (2.54) as h/L — 0. Since these expressions are
inversely proportional to the depth, and Z,,, M., are independent of depth, Z; and M,
formally dominate Z., and M, as h/L — 0.

The calculation of Z,, and M, is a well-known but difficult problem. At practical
h/L values, Z, is still appreciable and must be included in the force computations.



Here we approximate Z,, using the analytic formula of Havelock (1939) for a spheroid,
and approximate each hull as an equivalent slender spheroid of the same length and
displacement, as done by Tuck & Taylor (1970). This gives for Z,

Zo = pU?Awé® (logg + g — e) (2.79)

with Aw again the waterplane area. The slenderness ¢ is equal to the beam/length ratio
of the equivalent spheroid; for a general hull this is given by

12
€= 1/?0\, . (2.80)

Here Cy is the volumetric coefficient A/L?, with A the displaced volume. The linearized
flow furnished by this theory is of leading order in the small quantity e.

For fore-aft symmetric ships, M, is identically zero. Since the hull shapes that we are
considering are close to fore-aft symmetric, we shall not attempt the difficult calculation
of M., assuming instead that it is small enough to be neglected for midship sinkage
calculations.

The depth corrections Z; and My were found by Tuck & Taylor to satisfy

pU2 > 2a D *
Zy = —ﬁ/_wk S(k)B*(k)Q(k)dk
M, = Z—Z /_ © K25 (6)XB (k)UK dk | (2.81)

where Q(k) is given by

q

0o 1
Qk) = —2 1
(k) /|k V2 — k2 [ qtanh(gh) — F2k2h

dq . (2.82)

Apart from the complicated integral defining Q(k), these Fourier-transformed expressions
are similar to the TSWT expressions (2.53) and (2.54).

2.4.2 Studying the Q(k) integral

The integrand in (2.82) has a singularity at ¢ = ¢o, where
qoh tanh(qoh) = F?k*h? . (2.83)
Taking a Taylor expansion of qtanh(qh) — F2k?h around this point tells us that
qtanh(gh) — F2k*h ~ (tanh(qoh) + qoh sechQ(qoh)) (g — qo) near g = qq

so that the singular point g is a simple pole.

In determining (%), the path of integration must pass around this pole in the complex
g—plane. It is in deciding whether to pass above or below the pole that the radiation
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condition is used. The Fourier-transformed velocity potential which involves (k) must
be inverted to find the velocity potential ¢ ; as seen in Tuck & Taylor this expression for
¢ therefore involves a factor of e™*¥ in the integrand (similar to the TSWT expression
(2.48). As we showed in §2.3.5, the imaginary part of k£ while traversing the pole must
be positive for there to be no disturbance as X — —oo. This is true whether the real
part of k is positive or negative.

We can use the fact that the path of integration must pass above the pole in the complex
k—plane, to work out which side of the pole the path of integration should pass in the
complex g—plane. The variable ¢ comes about through a substitution

q=Vk?+1? (2.84)

where the variable v is the Fourier transform variable in the y—direction (i.e. the inverse
transform for ¢ involves a ¥(v)e~*Ydv integration). Therefore, letting

q=1q +1g
k =k, +ik;
allows us to find whether ¢; should be positive or negative. Substituting into equation
(2.84) and squaring, we have
@ — @+ 2q,qi1 = k2 — kI + 2k ki + V7.

Equating imaginary parts requires that

@ q; = ki k; .

Since the range of integration is over positive values of ¢, and the radiation condition
states that k; should be positive, the sign of ¢; must be the same as that of k,. Therefore
the path of integration in the complex g—plane must pass above the pole when k£ > 0 and
below the pole when k£ < 0. This was not noticed by Tuck & Taylor.

The integrand in (2.82) is pure real. Therefore the real part of Q(k) is obtained by
calculating the Cauchy principal value integral, while the imaginary part is evaluated
from the residue at the pole. This gives for the imaginary part

-9 —q )
res ;g
Iy (q tanh(gh) — F2k2h ™

_ —2mqo sgn (k) (2.85)

\/ @@ — k2 (qoh sech?(goh) + tanh(qoh)) ’

again different to the Tuck & Taylor result.

We note that Re{2(k)} is even and Im{Q(k)} is odd (as they must be for Z; and M,
to be pure real in the expressions (2.81)). Hence we only need to discuss the solution of
equation (2.82) for k£ > 0.

Im{Q(k)} = —msgn(k)




The pole in equation (2.82) will only occur in the range of integration if gy > k. Using
the fact that
tanh(z) < z forz >0

we can state that
qoh tanh(goh) < (goh)?* .

Using the definition (2.83) for ¢q tells us that
F2k*h? < (qoh)?
or
qo > Fpk .
Therefore we can say immediately that gy will always be greater than £ when Fj, > 1.

If Fj, < 1, we can still have gy > k if k£ is in the correct range. Let us first suppose that
go = k at some k value which we shall call k. Substituting this into the definition (2.83)
gives

koh tanh(koh) = F2k2h?

or
tanh(koh
7”160(}10 ) _ FZ. (2.86)
Since
tanh(x)

0<

<1 forx > 0,
x

equation (2.86) will always have a solution for ky when Fj, < 1. As F}, increases from
zero to one, ky decreases from infinity to zero.

We shall now show that when Fj, < 1, ¢y > k for all k& > ky. Because tanh(z)/z is a
decreasing function of z, for k£ > ky, we have

tanh(kh) < tanh(koh)
kh koh 7

or, using the definition (2.86) for k,

tanh(kh)

<F}.
kh "
We now substitute in the definition (2.83) for ¢o to give

tanh(kh) - tanh(goh)
kh wh

Again, since tanh(z)/x is a decreasing function of x, this implies gy > k whenever k& > k.

Q(k) has a non-zero imaginary part whenever ¢y > k; this is true for all £ > 0 if Fj, > 1,
or for all £ > ko if F, < 1, with ky defined by equation (2.86). Remember that we are
only considering positive k—values here, since we know that Im{Q2(—k)} =-Im{Q(k)}.



The imaginary part of Q(k) for F,, < 1 was overlooked by Tuck & Taylor, leading to the
incorrect conclusion of zero subcritical trim for fore-aft symmetric hulls.

We note from the expression (2.85) that the imaginary part of (k) is non-zero but finite
for all £ if Fj, > 1, since ¢ is always greater than £ in this case. In the subcritical
case, since go = k when k = ko, equation (2.85) is singular around k = kq. Similarly,
the Cauchy principal value integral in (2.82) is unbounded when ¢y and k coincide, as
the denominator acts like (¢ — k)32 around ¢ = k. The full (g, k) double integrals in
the force and moment expressions (2.81) do still exist; we must, however, take care in
evaluating them around (q, k) = (qo, ko)-

2.4.3 Numerical method

In order to evaluate Z; and M, according to equation (2.81), we discretize the k—variable
in the same way as was done in §2.3.3. For each value of k we evaluate the integral (2.82)
by making the substitution ¢ = ksec? to remove the singularity at ¢ = k (here also we
shall only consider k& > 0).

The integral then becomes

(2.87)

3 q dv
Qk) = -2 1-— .
(k) /0 [ q tanh(gh) — F,kah] cos ¥

This has a simple pole at ¥ = ¥y, defined by ¢y = ksecty. In order to evaluate it, we
split off the singular part using the method

5 f0) L. rF f(9) — f(o)
/0 ﬁ_ﬁodﬁ_/o T, i+ £ (90) o,

m
3 — Yo

o

and then evaluate the remaining non-singular integral by numerical quadrature.

For values of k£ not equal to kg, this method worked well for dealing with the singularity
at ¢ = qo. However, the singularity when (¢, k) = (qo, ko) proved difficult to deal with
because of its two-dimensional nature. We attempted doing the k—integral before the
g—integral but this did not help matters, and no simple substitution could be found to
avoid the problem. In the end the best that could be done was to use the midpoint method
to evaluate Q(k), with a finely-spaced grid; the resulting discrete values were then used
in the force and moment integrals (2.81) despite their inverse-square-root singularity. As
such, Z; and M, were slightly oscillatory functions of F}, when F}, was close to 1, because
the singularity at £ = kg moved into the range where the integrand was appreciable. In
presenting graphs of the results we have smoothed them slightly over this small region
close to I}, = 1.
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2.5 Scaling

The TSWT force (2.53) and moment (2.54) were derived in terms of dimensional variables.
However, they may be written in dimensionless form, since they and the TSWT and FDT
theories described are all linear. For a given shape of ship, the dimensionless products

z and (2.88)

pgSmameax pgSmaXBmaxL
are functions only of F}, and h/L. Solving (2.57) then tells us that

h
=0y f (Fh, z)
h
0=Cy m (Fh, Z) (2.89)

where the functions f, m depend only on the shape of ship.

Therefore, for a given shape of ship, h/L ratio and Froude number, the ship may be
stretched in the streamwise or transverse directions, with the only influence on s/L
coming from Cy. In particular, s/L is independent of scale, if the ship’s proportions are
kept constant. This allows us to justifiably “scale up” model test results according to
this theory. Since the trim angle 6 is independent of scale, the bow and stern sinkages
are also proportional to shiplength for constant values of h/L and F},.

In FDT, only the force and moment corrections Z; and My (2.81) can be written so
as to allow stretching in the transverse directions. Z,, and M., both have complicated
dependence upon beam and section area and so cannot be scaled in this way. However,
the total FDT force and moment can still be written as dimensionless products like (2.88),
provided that the proportions of the ship remain constant. Therefore s/L and 6 are still
independent of scale in FDT, and can be justifiably scaled up with increasing ship size.

2.6 Results

2.6.1 Comparing TSWT and FDT

In order to compare TSWT and FDT numerically, we first consider a fore-aft symmetric
hull with parabolic waterplane and section area curves, i.e.

) = B )

S(X) = Smax (1— f—j) (2.90)

for X € [—¢,¢]. The maximum beam and section area are chosen to be in the same
proportions as the Taylor A3 hull, which will be discussed later. Therefore we have
chosen L/Bupa = 10.8 and L?/Sp.. = 378.3 for these results.
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Figure 2.1: Sinkage (as a fraction of shiplength) as a function of F}, for parabolic hull,
using TSWT and FDT.

Figure 2.1 shows the scaled midship sinkage s/L as a function of F} for this hull, with
h/L = 0.125, as calculated using both transcritical theories. We see that, at this relatively
small value of h/L, the two theories produce very similar results. The sinkage in each
case rises to a maximum at Fj, = 0.965 before tending sharply back toward zero. This
is consistent with the result of §2.3.4 that the TSWT sinkage as a function of F}, tends
to zero in a square-root manner as F, — 1 and is identically zero for F > 1. FDT has
similar properties, although there is an apparent small but non-zero supercritical sinkage
which we believe to be spurious (see later).

We notice that the maximum sinkage according to FDT (s/L = 0.0097) is slightly higher
than according to TSWT (s/L = 0.0092).

Whereas TSWT gives a smooth monotone increase in the sinkage until it reaches the
maximum, FDT is slightly oscillatory in slope. This is a property of the governing
equations and not of the numerical method, as the graph was reproduced exactly with
different grid spacings in each of the variables. Being fully dispersive, FDT retains some
bow-stern wave interference effects that are familiar in classical ship hydrodynamics, and
which for example lead to analogous oscillations in wave resistance curves for ships.

The present FDT results can be compared with those of Tuck & Taylor (1970). The
maximum sinkage given there for one particular value of h/L agrees moderately well
(within 10%) with our predictions, although their sinkage curve is more oscillatory at
lower Froude numbers. This may have been due to the computations in Tuck & Taylor
(1970) not handling the singularity in Q(k) for F,, < 1 with adequate numerical precision.
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Figure 2.2: Bow-up trim angle (in degrees) as a function of F}, for parabolic hull with
h/L = 0.125, using TSWT and FDT.

A problem with FDT is an anomalous behaviour at large Froude numbers. The infinite-
depth force contribution Fi, increases in proportion to U?; if the theory is to agree with
TSWT in the shallow-water limit, F, should be cancelled by the correction Fy at high
Froude numbers, leading to a net force that tends to zero at infinite speed. However,
any error in approximating either Fi, or F,; will ultimately produce a total force that is
erroneously quadratic in U for large Fj,. This is already beginning to be apparent at the
right side of Figure 2.1, and the present FDT results (especially with use of the Havelock
approximation to Fy,) are not to be considered accurate at large Fj,.

Figure 2.2 shows the corresponding trim angles for the same hull, according to the two
theories. According to both theories, the ship will have a large bow-up trim angle in the
neighbourhood of Fj, = 1. The maximum trim occurs at Fj, = 0.99 according to both
theories, which is slightly higher than the Froude number at which the maximum sinkage
occurs (Fp, = 0.965).

As is the case with sinkage, the maximum trim according to FDT (2.88 degrees) is
slightly higher than according to TSWT (2.65 degrees). Also, the TSWT curve is smooth,
while the FDT is oscillatory at lower Froude numbers. The discrepancy for large Froude
numbers cannot be due to an error in approximating M, since this is identically zero.
We suspect that the correction M; may be quite sensitive for large Froude numbers, and
place more faith in the TSWT in this range.
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2.6.2 Comparison with experimental results

We have used both the TSW'T and FDT to compute the midship sinkage of a “Taylor stan-
dard series” hull (Gertler 1954), which corresponds to a slightly non-fore-aft-symmetric
ship. A model hull of that shape designated A3 by Graff et al (1964) was used; this has
L/B =10.8, L/T = 32.4 (with T the draught) and volumetric coefficient Cyy = 0.0017.
The experimental results of Graff et al (1964) for the same hull are reproduced here for
comparison.

Shallow water

Figure 2.3 shows the midship sinkage as a function of Froude number for the A3 hull,
travelling in water of scaled depth A/L = 0.125. As an example, this would correspond
to a 200 metre ship, with a draught of 6.2 metres, travelling in water of depth 25 metres.
The sinkage is calculated using TSWT and FDT theories, with the experimental results
also shown.

We see that both theories are reasonable in accuracy. In particular, the maximum sinkage
determined experimentally (s/L = 0.0089) lies in between that predicted by TSWT
(s/L = 0.0081) and by FDT (s/L = 0.0094). There is a difference in the Froude number
at which this maximum sinkage occurs, being at Fj, = 0.89 experimentally, although we
predict it at Fj, = 0.965, according to both theories.

The rising of the ship in the water, for F} slightly greater than 1, is not predicted by
either of the theories. However, for larger F},, the predicted sinkage is very close to zero, in
accordance with the experimental results. Since this ship is not quite fore-aft symmetric,
TSWT gives a very small but non-zero sinkage for F}, > 1, which agrees reasonably with
the experimental results. The quadratic-type error in FDT again becomes apparent for
large F},.

Deeper water

Figure 2.4 shows the midship sinkage for the same ship travelling in twice the depth of
water, i.e. h/L = 0.25. This corresponds to a depth of 50 metres for our example hull
of length 200 metres and draught 6.2 metres. In this case we see that TSWT greatly
underestimates the maximum sinkage, as the shallow-water assumption of h/L being
small is no longer acceptable. FDT, however, gives a maximum sinkage of s/L = 0.0066
at Fj, = 0.86, which is close to the experimental maximum of s/L = 0.0068 at F,, = 0.88.

2.6.3 Trim and stern sinkage

The trim of the A3 hull, as predicted using TSWT, was also compared to experimental
results. This is shown in Figure 2.5. There is fair agreement in this case, despite the
predicted peak being sharper and higher than the experimental results.
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Figure 2.3: Sinkage (as a fraction of shiplength) as a function of F}, for Taylor Series hull,
with h/L = 0.125. TSWT, FDT and experimental results.
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Figure 2.4: Sinkage (as a fraction of shiplength) as a function of F}, for Taylor Series hull,
with h/L = 0.25. TSWT, FDT and experimental results.
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Figure 2.5: Bow-up trim angle (in degrees) as a function of F}, for Taylor Series hull, with
h/L = 0.125. Comparison of TSWT with experiment.

The large bow-up trim experienced by ships in the transcritical speed range means that
the ship’s stern is particularly vulnerable to grounding. Since the maximum midship
sinkage and maximum trim occur at almost the same Froude number, the stern sinkage
will be very large around this Froude number.

In Figure 2.6 we have plotted the scaled stern sinkage Sgiern/L (given by s/L+6/2) for the
A3 and parabolic hulls. This is found using TSWT and plotted as a function of Froude
number. We see that for the A3 hull the maximum stern sinkage is Sgern/L = 0.0285.
The experimental results give a smaller maximum of sgen/L = 0.0228, the difference
mainly being due to the difference in trim angles.

For the parabolic hull, which has a larger Cy, the stern sinkage reaches sgtern/L = 0.0308.
For a 200 metre ship, these results correspond to a predicted stern sinkage of 5.7 metres
for the A3 hull (compared to 4.56 metres according to the experimental results) and 6.16
metres for the parabolic hull.

2.6.4 Maximum sinkage

We have seen that when midship and stern sinkage are plotted against F} for a fixed
value of h/L, they both reach a maximum just below F;, = 1. In fact, at very high
supercritical Froude numbers, the stern sinkage may reach a higher value than in the
transcritical range; however, the speeds required for this to occur are not realistic for
most displacement hulls.
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Figure 2.6: Stern sinkage (as a fraction of shiplength) as a function of F}, for parabolic
and Taylor Series hull, with A/L = 0.125. Calculated using TSWT.

By finding the maximum sinkage with respect to F}, for each value of h/L, we can plot
the maximum midship and stern sinkage as a function of A/L. This is shown in Figure
2.7 for the Taylor hull. The at-rest underkeel clearance (UKC) is also shown for each
depth.

Where the maximum sinkage is larger than the UKC, there exists a range of Froude
numbers for which the ship is predicted to scrape the sea floor. Therefore, where the
UKC line crosses the maximum stern sinkage curve gives the value of h/L for which the
stern is predicted to just touch the sea floor at one particular Froude number. If the ship
were unable to trim, the midship would touch the sea floor at the value of h/L for which
the maximum midship sinkage curve crosses the UKC line.

Therefore we see that for the Taylor hull the stern is at risk of grounding for A/L < 0.078,
which corresponds to h/T < 2.52. Similarly, if trim were not taken into account, the
midship would be at risk of grounding for h/L < 0.052, which corresponds to h/T < 1.68.
These are large at-rest clearances that are needed for ships which intend to travel at
transcritical Froude numbers.

2.7 Conclusions

We have used two slender-body methods to solve for the sinkage and trim of a ship
travelling at arbitrary Froude number, including the transcritical region.
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Figure 2.7: Maximum midship and stern sinkage (as a fraction of shiplength) as a function
of h/L for Taylor Series hull, as calculated using TSWT. At-rest underkeel clearance
(UKC) also shown for each depth.

The transcritical shallow-water theory (TSWT) developed by Mei (1976) has been ex-
tended and exploited numerically using Fourier transform methods to give sinkage and
trim. This theory has also been extended to the case of a ship moving in a channel of
finite width; however, the numerical difficulty in computing the resulting force integral,
and its limited validity, mean that the open-water theory is more practically useful.

The finite-depth theory (FDT) developed by Tuck and Taylor (1970) has also been im-
proved and used for general hull shapes. This theory gives a sinkage force and trim mo-
ment that are slightly oscillatory in F},. Since the theory involves summing infinite-depth
and finite-depth contributions, both of which vary with U? at high Froude numbers, any
error will grow approximately quadratically with U. Therefore we cannot use this theory
at large supercritical Froude numbers. Also, the difficulty in finding the infinite-depth
contributions numerically, as well as the extra integral needed to compute the force and
moment, make FDT more difficult to implement than TSW'T.

When compared to the experimental results of Graff et al (1964) , both theories were seen
to give good results for the maximum midship sinkage at h/L = 0.125. At h/L = 0.25,
as expected, only FDT gave good results for maximum midship sinkage.

In practice, scenarios in which ships are at risk of grounding will normally have h/L <
0.125. Since TSWT is a shallow-water theory and it works well at h/L = 0.125, we
expect that it will give even better results at smaller, practically useful values of h/L.
Unfortunately, A/ L = 0.125 is the smallest value for which experimental data are available
to check the theory.
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The main discrepancies between the theoretical and experimental results were:

* The trim predicted using TSWT has a sharper, higher peak than was found experimen-
tally.

* The maximum sinkage was predicted to occur at a slightly higher Froude number than
was observed experimentally.

* Neither of the theories predicted the rise of the ship in the water that was observed
experimentally at low supercritical Froude numbers.

The two likely reasons for these discrepancies are:

1. Although the experiments were performed in a very wide tank, it is possible that un-
steadiness and production of solitons may have altered the transcritical flow from what
would be observed in open water.

2. The nonlinear term that was neglected in the derivation of TSWT may need to be
included when Fj, is close to 1.

Further experimental and numerical work are required to resolve these discrepancies.

In any case, the results for maximum sinkage furnished by this theory were impressively
close to the experimental values, and it is this maximum sinkage which is of most impor-
tance. The bodily rise of the ship in the water at supercritical Froude numbers is not of
concern with regard to ship grounding.

Another interesting departure from the experimental results was the lesser angle of trim
predicted by TSWT at supercritical Froude numbers. Although sinkage is basically an
inviscid phenomenon, it is thought that viscosity may affect the trim; separation near the
stern would tend to decrease the pressure there and increase the bow-up trim moment.

Since, in the transcritical range, the ship experiences a large bow-up trim moment, the
maximum transcritical sinkage occurs at the stern. By calculating this stern sinkage for
our two example hulls, we showed that the stern sinkage can be remarkably large at
transcritical Froude numbers.
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Chapter 3

Unsteady Squat in a Narrow
Channel

We shall now extend the results of Chapter 1 to the case of a ship moving in a channel
of non-uniform depth. This will be done by developing an unsteady hydraulic theory in
earth-fixed coordinates. Some of this work has appeared in Gourlay & Tuck (1998a).

3.1 Problem formulation

The formulation for water of non-uniform depth is similar to the case of constant depth.
The following quantities are defined in the same way as in Chapter 1: the free surface
height (, local beam B, hull section area S and area taken up by the water A. The
channel may still have a cross-section of any shape; here, however, the cross-section may
also vary along the channel. The same assumptions discussed in Appendix B.1 apply for
the non-uniform channel.

The main difference in the theoretical treatment is a switch to the earth-fixed coordinate
x, which is shown in Figure 3.1. Defining again the average depth over any channel
cross-section as h, we have h = h(z) in this coordinate system. Similarly, the waterline
channel width w may also be a function of z. In this way, the method is valid for either
rectangular-sectioned or arbitrarily-shaped channels.

The benefit of using the earth-fixed coordinate system lies in the fact that h and w are
independent of time ¢ at fixed x. The drawback is that the ship parameters S(X) and
B(X) do depend on t in the new coordinate system.

Having chosen the position of the origin £ = 0, we choose the origin in ¢ to be the time
at which the centre of the ship passes x = 0. The transformation between the two sets of
coordinates is therefore x = X — Ut, with ¢ the same for each coordinate system. Hence
we write S(X) = S(z + Ut) in the new coordinate system, and similarly for B(X). Both
of these quantities have non-zero z and ¢ derivatives.
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h(x)

fluid velocity = V¢

Figure 3.1: Earth-fixed frame of reference

The velocity potential in earth-fixed coordinates is ¢, which is the same as the disturbance
velocity potential in body-fixed coordinates (as used in Chapter 2). According to the
hydraulic theory, this is a function of z and ¢ only. The streamwise velocity component
¢, will be designated as u, which is the same as the velocity perturbation in body-fixed
coordinates used in §1.4. In the unsteady theory, the time-derivatives of ¢ are also needed.

Since we shall be concentrating ultimately on linearized flow, the ship will be considered
vertically fixed in its rest position.

3.2 The unsteady hydraulic equations

In terms of the cross-sectional area A taken up by the water, the unsteady continuity
equation can be written (Stoker 1957 p. 453) as

0A 0
St (Au) =0 (3.1)

where, as in §1.2, A(z,t) = Sp — S + (w — B)(. Here Sy = wh is a function of z only,
and we assume that the ship and channel walls are vertical at the waterline.

Using the change of variables X = x + ut, the x and ¢ derivatives of S(X) become

S ,
S5 = US(X). (3.2)

Henceforth S’(X) will be abbreviated to S’, and similarly for B'(X). Expanding equation
(3.1) gives for the unsteady continuity equation

US4 (w—B) G — UB'C+ (So — S+ (w — B) ) g
+u (Soz — S"+ (w—B) e+ (wy; — B)()=0. (3.3)

The unsteady Bernoulli equation in earth-fixed coordinates is

9¢ + %uQ +¢=0. (3.4)



Since u = ¢,, the continuity equation (3.3) and Bernoulli equation (3.4) define two
simultaneous equations for the unknowns ¢(z,t) and ((x,t). We can eliminate ¢ by
rearranging (3.4) to give

T
G = —é (uus + ¢y)
G o=~ (st ) (3.5)

Substituting these into the continuity equation (3.3) yields the nonlinear equation of
unsteady hydraulic flow:

— B UB' /1 —B /1
. S — v (uuy + dy) + (—u2 + ¢t) + (So - S - v (—u2 + (bt)) Uy
g g \2 g 2
- B . — B /1
+ u (S()w _g Y (vug + uy) — Yo~ 2 (§u2 + ¢t)> =0. (3.6)

This is a rather complicated nonlinear differential equation in two variables. A series of
attempts to solve it using a centred finite-difference method proved unsuccessful, due to
stability problems in solving the tridiagonal system. In any case, it is inconsistent to
solve the nonlinear problem unless we are also allowing the ship to squat (see §1.6) and
this would be very laborious in the unsteady case.

We shall prefer to concentrate here on the linearized form of the equation, which is
applicable to ships and channels for which B/w and S/S; are small quantities. In this
case u, ¢; and ( are also small, so that we may neglect terms of second order in any of
these quantities. The method is similar to that used in §1.4 for steady flow. Again, the
ship and channel walls need not be vertical at the waterline for linearized flow, but they
should not be excessively sloping.

The linearized version of the unsteady hydraulic equation (3.6) becomes
~US" — E¢tt + Sottz + uSpy = 0
g

or /
fu 1 (So¢s), = _us (3.7)

g w w

which is a one-dimensional wave equation with a forcing term. Therefore we expect that
travelling waves may be produced when depth changes are encountered by the ship. The
boundary conditions for this equation are that ¢, and ¢; should both vanish as + — +oc.

In this chapter we shall only consider channels that have constant waterline width w but
varying depth A. In that case equation (3.7) simplifies to

bu _us




Alternatively, this can be written in terms of the fluid speed u by differentiating with

respect to z, giving
Ut Us”

We shall now consider the application of this theory to the simple case of a step depth
change, and then outline a numerical method for dealing with general h(z).

3.3 Analytic solution for a step depth change

The simplest non-uniform depth problem is that of a ship passing from a region of con-
stant depth into another region of a different constant depth. This situation is depicted
in Figure 3.2 for a ship moving into shallower water.

We take the step to be at x = 0 and choose the origin in time as when the ship’s
midsection passes the step. t is therefore negative up until the ship’s midsection passes
the step. The region z > 0 is denoted region 1, such that h = hy, ¢ = ¢, and F}, = F}
here. Similarly, h = hsy, ¢ = ¢ and F), = F; for z < 0.

ship speed U

X

Fh == FQ
¢:¢2 h2 h1

Fh:Fl
¢ = ¢

Figure 3.2: Ship passing a step depth change

Note that one of the assumptions of hydraulic theory, that of slowly-varying channel
dimensions, is violated at the step. However, the resulting error in the flow occurs only
in a very small region either side of z = 0. Lamb (1932, p. 262) showed that, provided the
flux hu and free surface height ( are continuous across the step, the flow is still accurate
outside of the immediate vicinity of the step. We may justifiably use the theory therefore
for overall outputs such as sinkage and trim.

For this problem we shall solve the flow analytically by first considering separately the
flow on each side of the step.

For either z > 0 or z < 0, h is constant and equation (3.8) is a simple wave equation.
This has the particular solution

_UV(z+Ut)

C hw(1—F2)’

where V(X) is related to the ship’s volume such that V/(X) = S(X). This is the
linearized steady-state solution that was found in §1.4.
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The general solution also allows waves of arbitrary shape that travel at speed v/gh and
remain unchanged in form. Therefore in each region of constant depth, the most general
solution of (3.8) is

UV (z + Ut)

M+Uf+($_\/97ht)+[ff_(x+ ght) . (3.10)

¢($ ) t) =
Here f~ and f* are arbitrary functions; these waves must travel unchanged in form until
they hit the boundaries at x = 0 or = +o0.

We assume that the ship has started an infinite distance from the step, at which stage the
flow is perfectly steady with respect to the ship. Therefore there can be no wave travelling
in the —z direction for z > 0, since it would have to have originated at x = oo; here
we know the flow is steady with no mechanism for producing radiating waves. Similarly,
there cannot possibly be any waves produced at x = —oo, and hence there cannot be any
waves travelling in the 4+z direction for x < 0. Hence we may write

UV(z+ Ut
d)l(l',t) = ﬁ + Ufl(.Q? - \/ghlt)
v U

At this stage f; and fo are still arbitrary functions whose form must be determined from
the matching conditions at the step. These matching conditions are that the flux h¢,
and free surface height ( must be continuous at = 0. The conditions must hold for all
values of the time ¢. Note that the resulting fluid speed u and free surface slope (, are
actually discontinuous across the step.

Using equations (3.11) to match the flux h¢, from each region at x = 0 gives the condition
that

%Huf{(—\/ﬁt) - %nthafé(\/@t). (3.12)

The linearized free surface height can be seen from equation (3.5) to be proportional to
¢¢. Matching this from each region at z = 0 gives

U2 /— U2 /— /—

These two conditions can be solved simultaneously to give

, . (F1 _FZ)S(Ut)
fi(=\/ghit) = whi (1= F2)(1 + F)

and

, (F1 - F2)S(Ut)
filoht) = -y



Integrating yields the form of the travelling waves as

(Fy—F)V (—Fl(x - \/ngt))
fle=yoht) = — Ry
(7 - F)V (Ba(o + Vi)

hlz+yght) = — e A=)

(3.14)

for x > 0 and z < 0 respectively. These waves have the same shape as that produced by
the ship (proportional to V (z + Ut)), but have different length, amplitude and velocity.
With f; and f> defined in this way, the flow field is now known for all  and ¢ and can
be used to determine sinkage and trim.

In the analysis we have made no assumptions about whether the Froude numbers F} and
F; need to be greater than or less than 1. In fact, the theory is equally valid for all Froude
numbers, excepting the singularity at F, = 1. Therefore the flow may be subcritical on
both sides of the step, supercritical on both sides of the step, or subcritical on one side
and supercritical on the other.

This linear one-dimensional theory predicts waves travelling away from the step that
remain unchanged in form. In practice, these waves will normally either disperse or
break as they move away from the step. However, we might expect that this should
occur some time after the ship is passing the step, so that they will not then affect the
ship’s sinkage and trim.

3.3.1 Results for a simple hull

In order to compare these analytic results with the numerical method that is shortly to
be introduced, we shall consider a symmetric cusped hull whose local beam and section
area are given by

) = sun (125

X2
B(X) = Bmnax (1 — €—2> . (3.15)
Figure 3.3 shows the fluid flux uh for such a ship that has just passed a step depth change
to shallower water. The step is at x = 0 and the ship is moving from right to left. In this
case the flow is subcritical on both sides of the step. The large peak is the accelerated
flow around the ship, and is basically the steady flow. However, superimposed on this
are the two travelling waves, each radiating out from the step in opposite directions.

Each of these waves produces a retardation in flow speed u, which corresponds to the
troughs in the graph. The waves start being formed when the bow passes the step and
are completed when the stern passes the step. Therefore, while the ship is passing over
the step, the waves act to decrease the flow speed past the ship. Even once the ship’s
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Figure 3.3: Fluid flux uh as a function of x for a ship that has just passed a step depth
change to shallower water

stern is past the step, u is still affected until the wave travelling in x < 0 completely
overtakes the ship.

In Figure 3.4 the ship is passing a similar depth change but from shallow to deeper water.
We see that the waves are still radiating out from the step, but are crests rather than
troughs in this case. Therefore they act to increase the flow speed past the ship while it
is passing the step.

Results were also obtained for cases when the flow on one or both sides was supercritical.
For example, for a step depth change to shallower water with F; < 1 and F, > 1, the ship
will now be travelling faster than the radiating wave in x < 0. Also, this wave will now
be of opposite sign. When F; and F, are both supercritical, a positive wave is radiated
for £ > 0 and a negative wave, still travelling slower than the ship, is radiated for x < 0.

Once the flow field is determined, we can calculate the transient vertical force and trim
moment on the ship. Since we are using the fixed-ship method, these are found in the
same way as was done in §2.3.2, i.e.

¢
Z = / p B(X)dX
—t
‘
M = —/ XpB(X)dX . (3.16)
-t
In earth-fixed coordinates, with + = X — Ut, Z and M become

—Ut
Z :/ p B(z + Ut) do
—L—-Ut
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Figure 3.4: Fluid flux uh as a function of x for a ship that has just passed a step depth
change to deeper water

Ut
= _/e (x+Ut)pB(z+ Ut)dzx . (3.17)
Ut

The unsteady hydrodynamic hull pressure p is found from Bernoulli’s equation in earth-
fixed coordinates

1
Z—)+—U2+¢t:0,
p 2

giving, in linearized form,
p=—pdy . (3.18)

Using the solution (3.11) and (3.14), the hydrodynamic pressure has the analytic solution

| (F2—F1)S(7F1(:cf\/gh1t))
_pU? | _S(z+Ut)
w | hiw(1—F?) + wh1F1(1_F12)(1+F2) ] for z>0
D= L (3.19)
_pU? | _S(z+Ut) (Fl_Fz)S(F2(w+ Voha t)) for <0
w | haw(1—F2) wha P> (1-F3)(1—F1) )

This is used in equations (3.17) to determine the vertical force and trim moment.

Figure 3.5 shows the transient vertical force on the ship as it passes a step depth change
to shallower water. For these results we have used F; = 0.143, F» = 0.165 and w/h; = 1.
The axes are scaled so that the results are valid for any values of the other quantities.
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Figure 3.5: Scaled vertical force on a ship passing a step depth change to shallower water

We can see here the effect that the radiating waves have on the vertical force upon the
ship. Rather than trending smoothly from the steady deep water value to the larger-
magnitude steady shallow-water value, there is a lag which results from the flow retarda-
tion due to the two waves. This means that the vertical force does not reach the shallow
steady value until after the ship’s stern passes the step. More importantly, it at no stage
“overshoots” the shallow water value.

The transient trim moment (Figure 3.6) shows a strong bow-up trim as the ship is passing
the step. This means that the ship’s bow is unlikely to run aground while passing over
the step. The trim moment returns to zero slightly after the stern passes the step.

If changes in vertical force and trim moment happen slowly, we can assume the ship to
remain in static equilibrium. In that case the results of §2.3.4 apply for the midship
sinkage and trim of a symmetric hull, i.e.

Z = —pgAws
M = pglw0 .

Therefore, Figures 3.5 and 3.6 are proportional to the transient midship sinkage and trim
of the ship as it passes the step. The vertical axis of Figure 3.5 represents

S

_3U2? Smax
g w?

[\SJ9L)

while the vertical axis of Figure 3.6 represents

6

U_zsmax :
305z "8
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Figure 3.6: Scaled bow-up trim moment on a ship passing a step depth change to shallower
water

We can use this midship sinkage and trim to find the bow and stern sinkage of the
hull, which are shown in Figure 3.7. The strongly bow-up trim is evident, with the bow
having quite a small sinkage while the step is being passed. The trim moment has almost
returned to zero by the time the stern passes the step, so that the stern is only slightly
more likely to ground in the shallow water than when the ship is in its steady-state
condition.

Although the static equilibrium method will normally give a fair approximation to the
transient sinkage and trim, for a step depth change the variations are quite rapid and we
should include dynamical effects. Knowing the force and moment as a function of time,
the heave and pitch of the ship can be determined by added-mass ship motion methods,
although we shall not do this here.

Experiments in which the author participated were undertaken to study this phenomenon
at the Australian Maritime College (see Duffield 1997). These were to study both the
vertical force and trim moment for a fixed ship, and the sinkage and trim of a ship free
to squat, for the case (among others) of a step depth change.

The results were in general agreement with those shown here, with the ship experiencing
a considerable bow-up trim while passing a step depth change to shallower water. In most
cases neither the bow nor stern was more likely to run aground than in the shallow-water
steady-state condition. In fact, the vertical force took longer to reach steady state than
was predicted using this theory. The few cases where the stern or bow sinkage exceeded
the steady-state values were due to dynamical oscillations.
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Figure 3.7: Bow and stern sinkage for a ship passing a step depth change to shallower
water

For the case of a ship passing a step depth change to deeper water, the calculated vertical
force and bow-up trim moment are almost the mirror image of the deep-to-shallow case.
That is, the ship experiences a bow-down trim moment while it is passing into the deeper
water, and the magnitude of the vertical force slowly decreases to the steady-state value.

3.4 Numerical method for general depth profiles

We now outline a finite-difference method for solving the partial differential equation
(3.8) for general h(z).

Because of the first derivative term in h,¢,, centred-difference schemes to solve for ¢ are
unstable according to the Neumann criterion (Shashkov 1996 p. 155-158). The same is
true when solving for u in equation (3.9).

To overcome this difficulty, we write equation (3.9) in the form
Uh
(uh),, — gh (uh),, = —975"(33 +Ut) (3.20)

and use centred differencing to solve for the flux vh. In this way the first derivative terms
are effectively removed. Writing f = uh for convenience, and defining f7 = f(z;,%,),
centred differencing produces the three-level equation

_ gUh,J (5t)2
w

I = 2= 2) 7 = f1 (s + F) S"(e; + Ut) . (3:21)



Here h; = h(z;), 0t is the time step, dz is the z step and s; = gh;(6t/0z)?. If we know
the values of f' at the first two time levels, we can use equation (3.21) as a time-stepping
method. A Neumann stability analysis shows that the method will be numerically stable
provided that s; < 1.

The condition on s; is effectively an upper limit on the size of the time step d¢. Since
the condition must be satisfied everywhere in the computation region, and s; has its
maximum value when A is at its maximum, the limiting size of the time step will be
governed by the maximum depth Apy., in the region of computation. The maximum
possible time step is then given by 62 /v/ghmax-

The region of computation is chosen large enough that waves cannot propagate to the
boundaries by the time the final time step is reached. Therefore we use the boundary
conditions that f = 0 at the upstream and downstream edges of the computation region.

In the case where the ship starts in water of constant depth, we can use the steady
solution

US(z+ Ut)
flzt) = ———%
(see §1.4) as our initial condition at the first two time levels. If the ship starts in water
of non-uniform depth, the expression (3.22), with h = h(z) in F;, = U/+/gh, provides a
reasonable quasi-steady estimate to the initial flow.

(3.22)

With the fluid flux f = uh calculated at each time level, we now know the fluid speed u
as a function of x and ¢. In this case we find it easiest to switch to body-fixed coordinates
in order to find the vertical force and trim moment as a function of time.

The unsteady Bernoulli equation in body-fixed coordinates is

p 1 2 _12
p+QW+u)+@_2U

which gives the linearized hydrodynamic pressure p as

p=—pUu+¢) (3.23)

Note that the time derivative ¢, is taken at constant X, rather than at constant x as is
the case in the earth-fixed coordinate system.

Substituting the expression (3.23) into equation (3.16) for the vertical force Z gives

¢ ¢

Z = —pU/ uB(X)dX —,0/ ¢ B(X) dX

—t —¢

In order to evaluate the ¢, part of the integral, we define the hull parameter
X

B(x)= [ Be)de

and integrate by parts. This gives

4 ’ Y4
7= —pU /ZuB(X) dX — p[Boi]t, + p/e wB(X)dX



or

¢ ¢
Z = —pU/E uB(X)dX — p/éut [B(X) — B(0)] dX . (3.24)
In a similar manner, the bow-up trim moment (from equation (3.17)) is given by
¢ ¢
M:pU/euXB(X) dX+p/eut IM(X) — M(0)] dX (3.25)

with .
M(x) = [ eB()de.

3.4.1 Step depth change solution

As a test of the accuracy of this numerical method, solutions were obtained for a step
depth change and compared with the analytic results. One of the benefits of solving for
the flux f = uh, instead of the fluid speed u, is that continuity of flux is automatically
satisfied at step depth changes. The other condition, that ¢; be continuous, is satisfied
if we require that (uh), is continuous, as can be seen from equation (3.8).

In the course of performing computations for general-shaped hulls passing a step depth
change, it came to light that the finite difference method was given to producing spurious
waves radiating ahead of and behind the ship. These are a natural feature of the partial
differential equation, but should not be produced in steady-state flow.

A careful analysis of the finite-difference equation (3.21) shows how this can occur. Sup-
pose that the ship’s bow lies at a position z slightly less than z;,, at time ¢,. According
to hydraulic theory in constant depth, there should be no disturbance ahead of the bow,
that is, f;' = fi*; = 0. Since the bow has not yet arrived at z = z;, S" is also zero there.
For subcritical flow, since U < \/gh and gh;(6t/éx)* < 1, the ship moves a distance less
than dx in each time step. Therefore f;’“ should also be zero.

However, according to equation (3.21), ff“ is given by s;f7",, in this case. This starts
a wave travelling ahead of the ship that will continue to propagate as time goes on. A
similar wave is also generated travelling behind the ship.

For the wave ahead of the ship to be eliminated, S” must exactly cancel the contributions
from each of the gridpoints in equation (3.21). This does happen in the limit as 6z — 0,
but is difficult to achieve at finite values of dx. For general-shaped mathematically-
defined hulls, less spurious waves were produced when using a finite-difference method
for S” than when using the exact second derivative. This was because the finite-difference
method gave a smooth extension to the values of S” ahead of the bow, which helped to
eliminate the forward-propagating waves.

It was in order to circumvent the problem of waves radiating away from the ship in the
steady state that we used a cusped hull with S” = 0 at the bow and stern. However,

another idiosyncrasy of the finite-difference method was also revealed: that of numerical
drift.



Suppose that the finite-difference method is to be solved in a region of constant depth h.
Summing both sides of equation (3.21) over all values of j yields

PIPAES)EED S
J J

J

gUh (0t)*

C wér

}:S” (3.26)

As éx — 0, 3°; 8"0x — [ S"(X)dX which is zero for our cusped hull.

The sum of f values over all x gridpoints should be the same for each time level, since
the flow is steady. However, if for any reason this is not true, so that

ijn_l =

J

and

Zf”— (1+ ek

equation (3.26) tells us that

Yot =142k

j
In other words, the results will have a drift that increases linearly with time. For a ship
passing a step depth change, this effect was observed in each region of constant depth,
with output quantities having a linearly increasing drift away from their steady-state
values. In order to correct for this, while the ship was entirely in a region of constant
depth, the sum 3, f}LH would be calculated at the new time level. Each value of f}LH
would then be scaled so as to keep a constant sum at each time level.

Having dealt with these numerical difficulties, the finite-difference solution for the vertical
force and trim moment agreed with the analytic solution for a step depth change. With
the method thus verified, we shall now look at the case of a ship travelling in smoothly
shelving water, and then two constant depths joined by a ramp.

3.4.2 Smoothly shelving sea floor

The case of a ship travelling in a channel whose floor is shelving at a small constant slope
9 is depicted in Figure 3.8.

ship speed U

’TZ x
!

h(z) B

C

Figure 3.8: Smoothly shelving sea floor




The program was run using the initial condition given in equation (3.22), that is, the
quasi-steady approximation u, given by

US(z+Ut) _ US(x+Ut)

wh(L= ) ~ w(h— )

(3.27)

u=

where h = h(x). Values of ¥ up to 15 degrees were considered.

It was found that even after running the ship from quite deep water until it touched the
bottom, the velocity profile as given by the finite-difference method was almost indis-
tinguishable from the quasi-steady approximation (3.27). Therefore we conjecture that,
for a sloping channel with constant gradient, the quasi-steady approximation provides an
accurate and simple estimate of the velocity profile.

Using this approximation to the fluid speed u, the vertical force (3.24) becomes, in body-
fixed coordinates,

7z =

=l B(,;X_)SU;X) o [ wlBOX) - BO)] ax (3.28)

From equation (3.27), we have, in body-fixed coordinates,

US(X)h
UtZUhht:——( 3]21:2.
w(h—4)
In body-fixed coordinates, h; = —Uhx, so that Z now becomes

7 =

s /«'f B(X)S(X) , (B(f) = B(X)) S(X)hx (3.29)

w J¢ h_U?2 (h—U—2)2

9

In a similar manner, the bow-up trim moment (from equation (3.25)) is given by

v P /e XB(X)S(X) | (M() - M(X)) S(X)hx (3.30)

Equations (3.29) and (3.30) give the vertical force and trim moment as predicted using the
quasi-steady approximation (3.27). This is valid for any depth function h(z), although
we expect that it will be more accurate for slowly-varying depth functions. Note that
the expression (3.27) is still a function of time, and the time derivative terms must still
be included in the force and moment calculations.

We shall now see how these simplified expressions compare to the finite-difference results
for a more general depth function.



3.4.3 Ramp between two constant depths

Here we consider the bottom topography of two constant depths joined by a ramp at a
constant angle. In the first case this ramp is three times the length of the ship, while in
the second case it is the same length as the ship. The same hull and constant depths as
in §3.3.1 are used.

Figures 3.9 and 3.10 show the vertical force and trim moment on the ship as it passes
the long ramp. These are calculated using both the finite-difference method and the
quasi-steady approximation described in §3.4.2.
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Figure 3.9: Scaled vertical force on a ship moving between two constant depths joined
by a long ramp. Plotted as a function of time, with the points at which the bow or stern
passes the start or end of the ramp indicated.

We see that for this gently-sloping bottom topography, the quasi-steady solution is quite
close to the finite-difference solution. Both predict a gradual transition between the two
steady-state vertical forces, with a slight overshoot that was not predicted for the step
depth change. The bow-up trim is also quite similar according to both methods. We
notice by comparing the trim graph to Figure 3.6 that the trim moment is much smaller
for the ramp than for the step depth change.

For the short ramp case (Figures 3.11 and 3.12), there is less agreement between the
quasi-steady and finite-difference results, showing that the quasi-steady approximation
becomes less accurate when rapid depth changes occur. We notice that a slightly greater
overshoot is observed in the vertical force than for the long ramp. The magnitude of the
trim moment is larger than for the long ramp (Figure 3.10) and smaller than for the step
(Figure 3.6).
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Figure 3.10: Scaled bow-up trim moment on a ship moving between two constant depths
joined by a long ramp. Plotted as a function of time, with the points at which the bow
or stern passes the start or end of the ramp indicated.

Experimental results (Duffield 1997) for a ship passing a ramp showed more of a lag in
the vertical force reaching the steady-state value than was predicted here. No overshoot
was witnessed.

3.5 Conclusions

We have developed an unsteady hydraulic theory that describes the flow past a ship
in a channel of non-uniform depth. Since the full nonlinear theory proved difficult to
solve, effort was focussed on the linear theory. This was solved analytically in the case
of a step depth change, and an analytic quasi-steady solution was given for general h(x).
A numerical finite-difference method was developed to solve the linearized equation for
general h(z).

For a smoothly-shelving sea floor, the finite-difference results were almost identical to
those predicted using the quasi-steady theory. The results were also similar for a long
ramp between two constant depths, showing that the quasi-steady solution provides a
reasonably accurate solution to the unsteady hydraulic equation for slowly-varying h(x).

The results from the finite-difference method agreed with the analytic results for a step
depth change. These showed a lag in the vertical force in reaching the new steady state,
and a strong bow-up trim while the ship was passing a step depth change to shallower
water. A lag was also predicted in the vertical force for a ship moving into deeper water,
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Figure 3.11: Scaled vertical force on a ship moving between two constant depths joined
by a short ramp. Plotted as a function of time, with the points at which the bow or stern
passes the start or end of the ramp indicated.

with a bow-down trim in that case.

The experimental results of Duffield (1997) also showed a significant bow-up trim for
a ship passing a step depth change to shallower water. However, the vertical force, for
both step and ramp depth changes, showed more of a lag in reaching the new steady-state
value. This may have been due to the channel being too wide for hydraulic theory to be
valid; however, we shall see in the following chapter that quite similar results are obtained
using a fully two-dimensional slender-body shallow-water theory. Another possibility is
that the experimental lag in the vertical force may have been due to viscous effects.
During the time that the ship is passing a sudden depth change, rapid flow changes occur
which may not be adequately described by inviscid theory.

In any case, both the theoretical and experimental results showed that ships are only
marginally more at risk of grounding when moving into or out of shallow water than
when they are in the shallow-water steady-state condition.
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Figure 3.12: Scaled bow-up trim moment on a ship moving between two constant depths
joined by a short ramp. Plotted as a function of time, with the points at which the bow
or stern passes the start or end of the ramp indicated.



Chapter 4

Two-Dimensional Unsteady Squat

Here we develop an unsteady slender-body shallow-water theory. This theory is able to
describe the flow around a ship travelling in open water or a channel of non-uniform
depth. The theory and some preliminary results appeared in Gourlay & Tuck (1998b).

4.1 Unsteady slender-body shallow-water theory

Tuck (1964) developed a steady slender-body theory for ships travelling in an infinite
depth of water. This method assumed that the ship’s beam and draft were both small
(order €) multiples of the shiplength L.

The theory was then adapted to shallow water of constant depth (Tuck 1966) for un-
bounded fluid domains. In this case it was assumed that the water depth h was of the
same order as the ship’s draught, so that h/L was also of order e. This shallowness
assumption, along with the slenderness of the ship, greatly simplified the hydrodynamic
equations. Later (Tuck 1967) the theory was extended to describe the flow around a ship
travelling in a channel of constant width and depth.

In each case the problem was solved by matched asymptotic expansions, with the flow in
an inner region close to the ship being matched to the far-field solution.

We now follow a similar approach, but use earth-fixed coordinates (z,y, z, t), with the ship
moving at speed U in the —z direction. The formulation is the same as that described in
§3.1, with the extra spatial dimension y defined in the transverse direction (as in Figure
1.1) to form a right-handed (z,y, z) coordinate system.

The undisturbed depth is allowed to vary in both the z and y directions. For simplicity,
however, we assume that if the depth varies in the y—direction it is symmetric about the
x—axis, so that h(z,y) = h(z, —y). To preserve this symmetry, if the ship is travelling
in a channel it will be taken to be moving along the centre of the channel. With these
simplifications, the flow can be solved in y > 0 and then mirrored in y < 0. The more
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general problem not only requires solution in the entire domain, but also a more difficult
non-symmetric matching of the inner and outer flows.

We shall start with the unsteady, nonlinear equations of inviscid, irrotational flow. These
are Laplace’s equation

the unsteady Bernoulli equation applied on the free surface

1 1 1
9¢+ §¢i+§</>§+§¢§+¢t=0 on z = ((z,y,t), (4.2)
the kinematic condition on the free surface

(bz = ¢w<:v + ¢y<y + Ct on z = C(.’E, Y, t) (43)

and the kinematic condition on the sea floor

¢z = _¢$h$ - ¢yhy on z = —h($, y) . (44)

4.1.1 The outer expansion

In the outer region we assume that z,y = O(L) while z = O(eL), and expand ¢ in powers

of e
¢ =W + ¢ + 6@ + .

where each ¢™ is O(e"). Equating like powers of € in (4.1) tells us successively that

o) = 0
¢ = 0
¢§i) _ _viy(ﬁ(l) (4.5)
where V2, = 22 4 2%
Ty Oz oy?-

Therefore ¢{") and ¢ are constant in z. Equating powers of € in the bottom condition
(4.4) then tells us that these quantities are zero, so that #™M and ¢® are both independent
of z. We therefore have

0 = ¢ (z,y,1)
and
0@ =P (z,y,1) .
Equation (4.4) also tells us that
¢ = =0y — ¢Vh,  on z=—h(z,y),

which, along with the Laplace equation (4.5), determines ¢{*) as follows:

63 = —V2 60 (2 + h) — ¢Dhy, — ¢, . (4.6)
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We now use the free surface conditions to find an expression for q§£3) on z = 0. The
Bernoulli equation (4.2) becomes, to leading order,

g+ =0. (4.7)

If h/L = O(e), we expect for linearized flow that (/L = O(e)?, and this can be shown
as follows. The standard dimensions of ¢, are U, such that ¢,/U = O(e). Therefore the
standard dimensions of ¢; are that of ¢, dz/dt, so that ¢;/U? = O(¢). Writing equation
(4.7) as

L h"Lu?
we see that, subject to the assumption that the Froude number Fj, is asymptotically of
O(1), the free surface height is of second order, i.e.

¢ 2
Z:O(e).

C_ ol o

Hence, consistent to second order in ¢, the leading terms in the kinematic condition (4.3)
give

¢ =¢ onz=0. (4.8)

The linearized free surface conditions (4.7) and (4.8) combine to give the free surface
condition

(1)
d)ﬁj”):—d’l onz=0.
g
Equating this with the expression (4.6) applied at z = 0 gives the unsteady slender-body
shallow-water equation for the first-order outer velocity potential ¢ (x,y,t) (which we

will simply call ¢ from now on), namely

% = (hga), + (hdy), - (4.9)

This is a type of wave equation that describes two-dimensional wave propagation in a
non-uniform medium characterized by h(z,y). It is given by Stoker (1957, p. 419) for
describing two-dimensional long waves in shallow water of non-uniform depth. It has been
used, for example, to model tsunami propagation over non-uniform bottom topography
(see Houston 1978, Tuck 1979). Although the differential equation is easily solved when
h =constant, for general h(z,y) complicated numerical methods are required.

In open water, the boundary condition for equation (4.9) is that the fluid velocity V¢
must either tend to zero or behave like an outgoing wave at infinity. On the other hand,
if there are vertical side walls at y = i%w(m), we must apply the wall boundary condition

1
Gy = iiwz% ony = i%w(x) )

In this chapter, however, we shall only consider channels of constant width w, with the
ship travelling along the centre of the channel. In this case, the wall boundary condition

becomes
¢y =0 ony=+w/2. (4.10)
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4.1.2 The inner expansion and matching

In non-uniform depth, the inner flow analysis goes over virtually unchanged from that
developed by Tuck (1966) for constant depth.

In the inner region, both y and z are O(eL), while z is still O(L). We assume a series
solution for the inner velocity potential ¢ of the form

0=+ 0@ + @ 4

where each ¢ is O(¢"). In this region the depth is a slowly varying function of the
inner variable y/e, provided that h has no discontinuities in y near y = 0. Therefore, to
leading order, h(z,y) = h(z,0) over the entire inner region.

The inner flow is governed by the changing cross-sectional area S of the ship’s hull, which
causes water to pushed aside when S is increasing and pulled in when S is decreasing.
The behaviour of this inner flow further from the hull provides a boundary condition
which drives the outer flow.

The equations for the leading term ¢ reduce to a 2-D Laplace equation in the (y, 2)
plane with Neumann (zero normal velocity) boundary conditions on the hull, sea floor
and linearized free surface z = 0. Continuity then requires that there be zero net outflow
at the outer edges of the inner region, where y/e — +oo. Because of the symmetry of
the problem in the y-direction, there is no mechanism for producing any cross-flow in
the y-direction either. Since (") has zero normal derivative on all boundaries (including
the artificial boundaries at the outer edges of the inner region), ¢ is a constant in the
(y, z) plane. Therefore o™ = M (z,1).

The equations for ¢® are also unaffected by the variable depth. The outflow due to the
changing cross-sectional area of the hull, namely US’(z + Ut), is channelled sideways into
equal constant streams at the outer edges of the inner region (where h is still given by
its value at y = 0), so that we have

2 US'(z + Ut)
_)
oy 2h(z,0)

as y/e = too . (4.11)

Matching the inner and outer flows requires that the inner limit of ¢(z,y,t) be equal to
the leading inner term ) (z,¢):

¢ (z,0,t) = 90(1)(3:,15) ) (4.12)

The y—derivative ¢, must also match across the two regions; this is given at the outer
edge of the inner region by equation (4.11), and at the inner edge of the outer region by
¢y (z,04,t). Equating these gives the “body” boundary condition on the plane y = 04
for the leading outer term ¢(z,y,t)

US' (z + Ut)

%0 (7,06 8) = =575

(4.13)
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Therefore we need only solve equation (4.9), subject to the body boundary condition
(4.13) and the boundary condition at infinity or on the channel walls, in order to know
the entire leading-order flow field.

In the derivation of this theory, no assumptions have been made about the magnitude
of the channel width; however, for the slender-body theory to be valid, the ship’s beam
must be small compared to the channel width. This same condition was required for the
linearized unsteady hydraulic theory discussed in Chapter 3. We should therefore expect
that in the limit as w/L — 0 (with B/w still small) the two-dimensional theory should
produce the same flow as predicted using the one-dimensional theory. In fact, the two
theories do become identical in this limit, as is shown in Appendix B.4.

4.1.3 Vertical force, moment, sinkage and trim

In terms of the inner velocity potential ¢ near the ship’s hull, the unsteady Bernoulli
relation for the hydrodynamic pressure p reads

p
pt5 (vt +el) ton=0.

To leading order this becomes

p=—pat" .

Using the matching condition (4.12), we can write this in terms of the outer potential ¢
as

p= —,OQSt(-’L', O’t) . (414)

With the hull pressure p thus found, the unsteady vertical force Z and trim moment
M can be found in the same way as was done in §3.3.1, by switching to body-fixed
coordinates and using

l
Z = | pB(X)dX
—£

y/
M = —/_ZXpB(X)dX. (4.15)

4.2 An analytic solution for a step depth change

In the case of a ship approaching a step depth change, equation (4.9) can be solved
analytically using the method of images. This solution makes no allowance for waves
being produced as the ship passes the step, so is of limited use thereafter. Only the flow
in the time up until the ship meets the step is considered here. However, as we shall see,
the theory may remain approximately valid even after the ship passes the step in the case
of a wide channel or open water.

The problem formulation is the same as that described in §3.3, with the step at x = 0
and the ship moving from right to left. For x > 0 we have h = hy, ¢ = ¢; and F}, = Fi;
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for x < 0, h = hy, ¢ = ¢ and F, = F,. It is assumed here that the flow is subcritical
for x > 0, i.e. F; < 1. We shall initially consider the case of a step depth change in open
water.

4.2.1 Constant depth solution

Let us first consider the special case where h = constant, and the Froude number Fj, is
less than 1. In this case there are solutions to the governing equation (4.9) of the form
d(x,y,t) = Y(X,Y), with X = 2+ Ut, Y = /1 — F2y. The function ¢(X,Y’) then
satisfies Laplace’s equation

Yxx +Yyy =0 (4.16)

in these (X,Y) coordinates.

The solution of (4.16) for a single unit source at the origin in the (X,Y") plane is
1
P(X,Y) = 2—log\/X2—i-Y2 . (4.17)
T

Therefore, this is also the solution of (4.9) for a single unit source moving in the (x,y)
plane, with ¢(z,y,t) = ¢¥(X,Y), i.e

o(z,y,t) = 2—log\/ r+Ut)2+ (1 - F?)y? . (4.18)

For a line of sources of length L = 2¢, centred on X = 0, the solution of (4.16) is

v(X,Y) = o [ Q©)logy /(X — 67+ 17 de. (1.19)

™

This transforms to a moving line of sources in the (x,y) plane, with ¢(z,y,t) = ¥(X,Y),
so that

é(z,y,t) =5 / &) log \/(x +Ut—&)2?+ (1 — F)y? d¢ . (4.20)

The source strength Q(X) can be found using the boundary condition (4.13). If we
consider y > 0, differentiating equation (4.20) gives

_ 2 o
qﬁy(x,O,t):i\'lQFhliml/e( QOVL-Fiy de |

v=0 e (X —€)2+ (1 —F})y?

The function

is the delta function §(z); it is zero everywhere except at the singular point z = 0. The
delta function has the property
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for any bounded function f(z) which is continuous at x = 0. Therefore
V1—F?Q(X

which, on equating with equation (4.13), yields the source strength as

US'(X)
hyJ1— F2

Using equation (4.20), the velocity potential for a slender ship moving in shallow water
of constant depth is therefore

QX) = (4.21)

U -

This is a simple derivation of the constant-depth slender-body shallow-water solution
obtained by Tuck (1966).

We shall now exploit the fact that the ship acts like a line of sources on y = 0. The
flow produced by each source as it approaches the step is considered, before using linear
superposition to find the flow around the entire ship.

4.2.2 The method of images

In the case of a ship moving at constant speed towards a step depth change, we can use
the method of images to find the flow on each side of the step. We first consider an
isolated unit source moving at speed U in the —x direction in > 0 for ¢ < 0, so that
it will reach the origin at t = 0. If there were no step present, the flow would simply
be given by (4.18). However, the step acts as a partially reflective barrier; the total flow
¢ = ¢1 in z > 0 is then that of the original source located at + = —Ut, plus that of an
image source located the same distance away on the other side of the step (at x = Ut),
in a fictitious extension to x < 0 with everywhere constant depth h;. Thus

1
i(zy1) = 5 -logy/(x+Ut?+(1- F)y?

+ L log \/(3: —Ut)?2+ (1 — FR)y? (4.23)
2m

in x > 0. The image source strength 7 is yet to be determined.

In order to find n we must match this flow to that of the ‘transmitted’ flow in x < 0, where
the depth is hy. Because of the wave-like nature of equation (4.9), this flow is analogous
to that of a wave partially reflecting and partially transmitting as it passes across the
boundary between two different media. The flow ¢ = ¢5 in x < 0 will then appear to be
generated by a source located in a fictitious extension to x > 0 with everywhere constant
depth hy. This moving source will be seen to have a different velocity, which we will call
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U,, and must be at position x = —U,t > 0, so as to also arrive at the origin at ¢ = 0. Its
strength is written as v, which is to be determined. Therefore the flow in z < 0 is

balz,y,t) = 5-log/(w + ULt)? + (1 = F2)y? (4.24)

with F, = U,/ \V/ghy. Note that our present solutions are only valid when F; < 1 and
F, < 1; i.e. the flows produced by the ship at its speed U in its depth h;, and by the
image (at a different speed U, in a different depth hy) are both subcritical. Supercritical
flows will not be considered here.

The matching conditions across the step require continuity of the free-surface elevation
(proportional to ¢;) and flux h¢, for all y and ¢t < 0. These conditions determine the
three unknowns 7, v and U,.

Matching ¢; across the step requires that

¢1t(0+7 Y, t) = ¢2t(0—7 Y, t) )

or
20%(1+mn) 2U%ty
U2 + (1 — F2)y?2 U224+ (1 — F2)y2 "’

If this is to be true for all y and ¢ < 0 we must have

1+n=v (4.25)
and 1— F? 1 — F?
— 41 Lk
TER T (4.26)
Matching the flux across the step requires that
h1¢1$(0+a Y, t) = h2¢2$(0—a Y, t) )
or
2Uth(1—mn) 2U, thyv
U222+ (1 — FR)y2 U222+ (1 — F2)y2
If this is to be true for all y and ¢ < 0 we need
h1(1 — 7’]) hQV
= 4.27
o U, (4.27)

in addition to condition (4.26).

The three simultaneous equations (4.25), (4.26) and (4.27) can be solved to give the
required expressions for 7, v, and U,, namely

hy — hoy/1 + F} — F?
n= 1 2 2 1 ’ (428)
hy + hoy/1 + F} — F?
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2hy

V= (4.29)
hy + hoy/1 + F2 — F?
and U
U, = (4.30)

1+ FZ — F?

where Fy = U/+/ghs. Note that the speed U in the definition of Fy is that of the ship
itself, and F, # F,. Although we have assumed that F, < 1, it is not necessary that
F, < 1. In fact, analysis of equation (4.30) shows that F, < 1 for all values of Fy if
Fi<1.

If hy < hy (i.e. the ship is moving towards shallower water) the source strength 7 is
between 0 and 1, whereas if ho > h; we have —1 < 1 < 0. The transmissivity v is always
positive when F; < 1.

For a line distribution of sources, the same analysis applies, so that the velocity potential
in x > 0 satisfies

0
buleut) = 5o [ Qg e+ Ut—e+ (1- F)? de

v L[ Q@ Ut ep (- FipE e (43)

where 7 is again given by equation (4.28). Note that the image line of sources is effectively
reversed, as the image ship is also approaching the step bow-first, but from the opposite
direction.

In order to satisfy the body boundary condition, the source strength ¢(X) must still be
given by equation (4.21). Therefore ¢; becomes

U ¢
o1(x,y,t) = m/ﬁS(&)log\/(erUt—g)?nt(1—F12)y2df

o — /Z S'(€)logy/(w — Ut +€)2+ (1 — F2)y? de . (4.32)
27Th1m —£

So long as the ship remains entirely in z > 0, this represents in > 0 the flow created
by the original ship and an image ship (of reduced strength 1) both moving towards the
step with speed U.

4.2.3 Vertical force and trim moment

In order to determine the fluid pressure on the hull, we find the inner velocity potential
¢1(z,0,t), which becomes

U ¢ '
$1(z,0,1) = S / Llog(@ =&+ Ut) +nlog(e + £ = U]S'(€)de . (4.33)
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The hydrodynamic hull pressure p is then determined using equation (4.14), giving

pU? /’v’ 1 n
B orhiyJ1 — F2 /-t —&E+Ut  z+E-Ul

In order to calculate Z and M, we transfer to the body-fixed coordinate X = z + Ut,
whereupon p becomes

] S'(€)de . (4.34)

pU- ‘ l 1 U ] ,
T o o2 - S'(€)de . 4.35
2ﬁh1ﬁ‘/—é X—-¢& X+&-2Ut (€)d¢ ( )
Inserting this into the expression (4.15) for Z yields
Z__p—UQ/e /é B(X)S'(E)[ S 7 ] dX de (4.36)
QWhlm —£J—L X_é' X+£_2Ut . A

This result may be written in alternative forms if we are considering a sharp-ended vessel,
for which B and S vanish at the bow and stern. Integrating equation (4.36) by parts
then yields the alternative forms

S A 1 n
7= QWhlm/_e/_eB(X)S(g) [(X—E)Z + (X+€_2Ut)2] dXde  (4.37)

and

"(€)[log (X — &) —nlog (X + & — 2Ut) ] dXd¢ . (4.38)

_ pU? tort o
7= orhiy/1 — F2 /—e /—KB 103

In each equation the first term in the square brackets gives the steady constant-depth
vertical force. For equation (4.38) this is in the same form as that derived by Tuck (1966).
The second term in each equation gives the additional force due to the presence of the
approaching step, which is time-dependent.

It would interest us to know whether this additional force, which we will denote by Zep,
is positive or negative. Looking at equation (4.37) we see that when the distance of the
centre of the ship from the step, d = —Ut, is large (remember ¢ < 0) the integral

U? t rt B(X)S
Ztep = #\/1"_71?12 [ Z [ e % dXd¢ (4.39)
acts like
pU?n /" /f BX)SE) jyvge |
Qﬁhlm ¢ Ad?
which integrates to
Doy ~ —2 Unldw (4.40)

87Th1d2\/1 — F12
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when d is large. Here A is the ship’s displacement and Ay is the waterline area in the
horizontal plane.

Equation (4.40) tells us that, at least when the ship is more than several shiplengths
away from the step, the vertical force correction Zge, is proportional to 1/d?. Zge, is
positive for a ship moving towards shallower water (n > 0), and negative for a ship
moving towards deeper water (7 < 0). This means that the midship squat of the ship
will be less than the steady-state value for a ship moving towards shallower water, and
more than the steady-state value for a ship moving towards deeper water.

The bow-up trim moment M can be found in a similar manner to equation (4.36) as

dXde.  (4.41)

B pU2 L L , 1 _ n
9k /1 — F2 /z/_zXB(X)S(g) lX—f X +&-2Ut

The first term in the square brackets gives the steady constant-depth trim moment, while
the second term gives the additional moment

¢ X B(X)S'(€)

tep = 27Th,1 /1_F2/ /EX-l—f—QUt

M, dXde . (4.42)

For sharp-ended vessels, this can be integrated by parts to give the large-d limit

pU*nA My

8rhid2,/1 — F2

v/
sz/_eXB(X)dX.

Mstep ~ (443)

where

For a fore-aft symmetric ship, My = 0 and the trim moment correction given by (4.43)
is zero. If My > 0, as is most often the case, the ship will experience a slightly greater
bow-down trim when moving towards shallower water.

When the ship comes closer to the step and the preceding asymptotic analysis is no
longer valid, we may evaluate the integrals (4.39) and (4.42) numerically. Both of these
integrals are non-singular if d > ¢, i.e. the ship’s bow has not yet reached the step. This
is in contrast to the steady-state contributions in equations (4.36) and (4.41), which are
always singular.

The integrals may be evaluated using a two-dimensional Simpson method. This can also
be used for the singular integrals if we integrate the singular part exactly in the vicinity
of the singularity. Although results for open water are not shown here, the correction to
the vertical force continues to increase as the ship approaches the step.

Although we have stated that the validity of the image method can only be ensured
for a ship approaching a step depth change, it is possible that no radiating waves are
produced when a ship passes a step depth change in open water. Numerical results for
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wide channels seem to suggest that this is the case. If this is so, the image method could
equally well be used after the ship has passed the step depth change. In this case we
would also have to assume that F» < 1 for the analysis to be valid.

Alternatively, since nowhere in the above derivation have we assumed that U > 0, for a
ship moving away from a step depth change we can change U to —U and S(X) to S(—X)
to obtain the flow field. The ship is then still in > 0 but heading away from the step in
the positive z-direction. We see from equation (4.39) that for a fore-aft symmetric ship,
the vertical force here will be the same as if the ship were moving towards the step.

If radiating waves are not produced, it is also possible to use the image method when
the ship is passing over the step. In this case we use the same analysis as previously for
the stern section of the ship which lies in x > 0. The flow due to the bow in z < 0 and
its image can then be considered separately, and the resulting velocity potentials added
by linear superposition. However, this method is tedious and no numerical results were
computed.

4.2.4 Finite-width channel

The steady solution of equation (4.9) for a unit source in a channel with walls at y = +w/2
can again be found by solving Laplace’s equation (4.16) in (X,Y’) coordinates. In these
coordinates, the source is stationary in a channel with side walls at Y = +/1 — FZ w/2.
The velocity potential ¢(X,Y") for a unit source in these coordinates can then be found
simply by the Schwarz-Christoffel transformation. It is given by Tuck (1997) and satisfies

PY(X,Y) = % log |cosh (£> — oS (U)27T7Y> . (4.44)

wy/1 — F? \1— F?

Therefore, in a similar manner to the open-water case, the steady-state solution for a
moving line of sources of strength such that (4.13) is satisfied can be found to be

U ¢ 27 21y
B(2,y,t) = ———— [ S'(€)log cosh | — (o~ £+ Ut) | —cos () de.
2mhy/1 — F2 /¢ wy/1 — F? w
(4.45)
This is an alternative derivation of the steady slender-body shallow-water solution for a

ship in a channel. It is in a different form to the Fourier-transformed solution given by
Tuck (1967).

As for the open-water case, to find the flow field in the presence of a step at x = 0 we
consider a single moving source and its image, so that for z > 0,

2 2
é1(z,y,t) = L log |cosh <77T(:r + Ut)) — cos (ﬂ)
2m w

J1— F? w
2w

n 2my
+ —log |cosh | ———=(z — Ut) | — cos (—) (4.46)
2m (w\/l — F? w
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while for x < 0,

2 2
bo(z,y,t) = % log\lcosh (wli\/%ﬂ?(x + U*t)) — cos (%) : (4.47)

Matching ¢; and he, across © = 0 gives the same values of 7, v and U, as in (4.28-4.30).

The vertical force in this case is

Z = Zsteady + Zstep )

with
ot (X —¢)
———" | dX 4.4
Zsteady 2h1w 1 — Fl / / coth (w /71 _ p2 d d& ( 8)
and

(X + & — 2Ut)
Zotep = 2h1w 1_F2 // th( i T )dXd{f. (4.49)

The first term Zgeaqy is the steady-state constant-depth solution, in a different form to
the Fourier-transformed version derived by Tuck (1967). For sharp-ended vessels, the
extra force Zg., due to the presence of the step can again be integrated by parts to give

9)

Zsten = . / / dX de . (4.50)
2\3 - m(X+€E—2U
o Ll s
For large values of d this limits to
m \?2 pU*nAAw
~ 4.51
Zatep (sinh m) (4.51)

87Th1d2\/1 — F12
m = 2rd/(w\/1 — F?) .

This differs from the open-water theory by the factor (m/sinh(m))?. This factor is
positive, so the sign of Zgep, is the same as in infinite width. We see also that the two
theories agree in the infinite-width limit, since m/sinh(m) — 1 as w — oo.

with

We know from the results of Chapter 3 that radiating waves are produced when a ship
passes a step depth change in a narrow channel. As we shall see in the following Section,
these waves are still produced in wider channels, although their amplitudes are smaller
than in narrow channels. Therefore we would expect the image method to be valid after
the ship’s bow passes the step only in the case of wide channels, for which radiated waves
appear to be negligible. In this case the flow could be found in the same way as was
discussed at the end of §4.2.2.



112
4.3 Numerical method

4.3.1 General depth profiles

The two-dimensional governing equation (4.9) can be solved in a similar manner to the
one-dimensional model considered in §3.4, by writing it in finite-difference form.

If we write equation (4.9) in the form

% = 1 (Baa + Byy) + hahs + Ry, (4.52)

and use a centred-difference method to solve for ¢, a similar problem of numerical stability
arises to that encountered in §3.4. According to the Neumann criterion, such a method
will be unstable due to the presence of the first derivative terms ¢, and ¢,.

This difficulty was avoided in the one-dimensional case by solving for the flux h¢,; in
the two-dimensional case, however, there are two flux components h¢, and h¢,. It is
possible to write two centred finite-difference equations to be solved jointly for the two
flux components at each time level, although such a scheme also proved unstable.

By writing equation (4.52) in the form

h
(h)u = hV?(h¢) — (h¢)V?h , (4.53)
g
a stable centred-difference method was found by solving instead for the single quantity
h¢. Because of the V2h term in equation (4.53), this method is clearly more suited to
smooth depth functions h(z,y). However, it can be modified for discontinuous depth

functions, as we shall see.

The boundary conditions on the differential equation (4.53) in open water are that ¢,,
¢y and ¢, all vanish or behave like an outgoing wave far away from the ship. If we are
solving the finite-difference equation in open water we must create artificial boundaries
at a sufficient distance from the ship. Ideally, these boundaries will be outside of the
domain of influence of the ship, so that we can set all ¢ derivatives to zero without any
risk of numerical reflection from the boundaries. Since the domain of influence becomes
larger as time increases, the boundaries also must be further from the ship if we wish to
study the flow at larger times.

For the case of a ship in a channel, we can instead specify the boundary condition of
zero fluid velocity normal to the channel walls. This limits the size of the computational
domain that is needed in the y—direction. As such, finite-width channels present less nu-
merical difficulty than open water; we shall prefer to concentrate on finite-width channels
for the numerical results.

Once the velocity potential is determined at each time level, the hydrodynamic pressure
is best found by switching to body-fixed coordinates, in order to more simply evaluate Z
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and M. The Bernoulli relation in body-fixed coordinates, namely
P2 2 2 _
pt 5 (0% + 6y +2) +pde + pUbx =0,

can be expanded in the inner region to give the leading-order hydrodynamic pressure on

the hull ) )
(9 59N o
p=-r (8t + Uax) ¥

which, using (4.12), becomes
0 0
p=-=p (a + Ua—X> Ply=o - (4.54)

With this expression for p in body-fixed coordinates, the vertical force Z and trim moment
M can be simply evaluated using the expressions (4.15). In fact, to determine the overall
quantities Z and M, it is better to bypass the evaluation of p in order to avoid unnecessary
numerical differentiation. For example, the expression for Z becomes

Y4 l
2 = =p{ [ BOOsraax +U [ B bxlroax]

= —p{%/iB(X)gMy:O dX — U/ZB'(X)(zﬁly:o dX} : (4.55)

where we have moved the t—differentiation outside the first integral and integrated by

parts in the second, assuming B(¢) = 0. A similar method is used for the trim moment
M:

M=p {% /_ZZXB(X) Blyo dX — U/_Z(XB)'qs\y:O dX} . (4.56)

4.3.2 Step depth change

In the case of a step depth discontinuity, we use the constant-depth form of the governing
equation (4.52) and apply suitable matching conditions at the step. As previously, these
postulate that both h¢, and ¢; are continuous across the step. Continuity of ¢; is
guaranteed by requiring that ¢ itself be continuous across the step at all times.

The constant-depth form of equation (4.52) is

which is the ordinary constant-coefficient wave equation. Writing ¢7 ) = d(xj, Yk, tn), We
may centre difference this to obtain the three-level time-stepping method

?,7:1 = Sz (¢?+1,k + ¢;’L—1,k) T+ Sy ( ?,lc—f—l + d)?,k—l) +2(1—s; — 5) ?k - ?,;1 . (4.58)
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Here s, and s, are defined by s, = gh (6t)° / (6z)°, s, = gh (5t)* / (8y)?, with 6z, dy and
0t the grid spacings in the z, y and ¢ variables. s, and s, are constant in each region of
constant depth.

This method will be stable according to the Neumann criterion provided that s, +s, < 1.
This is more restrictive than the criterion for one-dimensional flow (s, < 1).

The grid is so chosen that gridpoints lie on the lines y = 0, y = w/2 and = 0. Because
of the symmetry of the problem we only need to consider the region y > 0.

The boundary conditions for ¢, on the boundaries y = 0 and y = w/2 are enforced by
creating fictitious gridpoints outside the boundaries. These are then used to evaluate the
finite-difference form of the derivative ¢, on the boundary. The finite-difference equation
(4.58) can now be applied on the boundaries as well as within the computational domain.

However, since there is a line of gridpoints on the depth discontinuity at z = 0, we
cannot apply the finite-difference equation on x = 0; the relevant equation here comes
from matching the flux h¢, across the step. Matching ¢ across the step is automatically
satisfied since the gridpoints at = 0 belong to both regions.

In order to match the flux across the step we equate the three-point finite difference forms
for h¢, in each region:

5 <—3¢0,k +4¢1r — ¢2,k> _p <3¢0,k —4¢_1} + ¢—2,k)
1 = hy .

20 20z (4.59)

This relation is then rearranged to find the value of ¢y at the new time level, using the
neighbouring values which have already been found from equation (4.58).

In the case of a step depth change, it is not necessary to have a very large domain in
the z—direction, which would be required if we wanted to set V¢ = 0 at the outer
boundaries. Since the waves produced while the ship is passing the step are observed
to be one-dimensional, we may use one-dimensional wave boundary conditions at the
upstream and downstream boundaries. These use the fact that one-dimensional wave
solutions of the governing equation (4.9) must be of the form

¢>=¢(xi ght)

in each region of constant depth h. Since the waves must be radiating outwards from the

step, we must have
¢:¢(a:—\/gh1t> inz >0,

which implies the boundary condition

¢t+\/ﬁ¢wzo

at the boundary in x > 0. Similarly we may use the boundary condition

G —\/gha ¢, = 0
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at the boundary in x < 0. These expressions may be finite-differenced and solved si-
multaneously with the governing finite-difference equation to give the value of ¢ on the
boundaries at the new time level.

With ¢ solved for at each time level, the vertical force Z and trim moment M are found
in body-fixed coordinates using equations (4.55) and (4.56).

4.4 Results for a step depth change

We consider the same problem described in §3.3 and §4.2. The same symmetric cusped
ship defined by equations (3.15) is used, in order to minimize spurious numerical produc-
tion of radiated waves.

4.4.1 Numerical issues

The numerical problems encountered with the finite-difference method were similar to
those found while solving the unsteady hydraulic theory. These were principally numerical
wave radiation, numerical oscillation and drift.

In solving the constant-depth flow field for vessels with non-zero values of S’ and S” at
the bow and stern, similar waves to those described in §3.4.1 were observed radiating from
the bow and stern. With the cusped hull, however, these spurious waves were minimized.

Because of the need for numerical differentiation to determine Z and M, the results were
significantly affected by random numerical oscillations. These manifested themselves
principally in the time-derivative terms in equations (4.55) and (4.56). It is also in these
terms that the error due to drift was most important.

Numerical drift in two dimensions was similar to the one-dimensional case. A similar
analysis of the finite-difference method shows that in constant depth the error will grow
linearly with time. It was noticed that this error increased as the time step was made
smaller.

With a step present, the problem of drift proved difficult to correct in two dimensions.
Attempts to do so using similar methods to that described in Chapter 3 produced ques-
tionable results. Therefore in order to prevent rather than cure the problem, the grid size
and time step were prevented from being too small. However, a larger grid size and time
step produced larger numerical oscillations, so a compromise had to be reached. In this
way the grid size and time step were chosen so as to reach a balance between excessive
numerical oscillation and excessive drift.

The wave boundary conditions were successful in allowing a smaller computational do-
main to be used in the z—direction, while avoiding any artificial reflection from the
upstream and downstream computational boundaries.
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4.4.2 Flow velocity

The fluid speed ¢, in the in x—direction is plotted in Figure 4.1 for a ship that has just
passed a step depth change to shallower water. In this case the channel is quite narrow,
with the relevant parameter w/L = 0.2. The fluid speed is plotted at three different
points across the channel: in the centre (y = 0), halfway to the edge (y = w/4), and at
the channel wall (y = w/2).

Figure 4.1: Streamwise fluid speed ¢, for a ship that has just passed a step depth change
to shallower water, with w/L = 0.2

We can see that for this narrow channel the fluid speed past the hull is almost constant
across the channel. In addition, it matches the linearized hydraulic flow found in Chapter
3 (see Figure 3.3). This confirms the result of Appendix B.4 that the two theories should
agree in the narrow-channel limit.

Despite there being some variation across the channel in the flow speed past the hull,
the travelling waves radiating away from the step are perfectly one-dimensional. For this
narrow channel they are of a reasonable size, the same as that predicted using unsteady
hydraulic theory.

Results were obtained for a wider channel with w/L = 2.0. In this case, as in steady
slender-body shallow-water theory, the streamwise fluid speed ¢, was much faster near
the ship’s hull than near the channel walls. Waves were still radiated away from the step
as the ship passed over, but for this wider channel they were almost negligible. Careful
examination, however, showed them to be still perfectly one-dimensional.

At this increased channel width we see how the two-dimensional theory departs from the
hydraulic theory: according to hydraulic theory, the flow is always uniform across the
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channel and the amplitude of the radiated waves is proportional to the flow speed past
the ship; in two-dimensional theory the flow tends towards the open-water flow as the
channel width increases, with higher flow speed near the hull and insignificant radiated
waves produced as the ship passes the step.

4.4.3 Vertical force and moment

For a narrow channel (e.g. w/L = 0.2) the transient force and moment were almost
identical to that predicted using the unsteady hydraulic theory (see Figures 3.5 and 3.6).
These showed a vertical force that was delayed in reaching the new steady state because of
the radiating waves retarding the flow. Again, no overshoot or undershoot was witnessed.
The trim moment was strongly bow-up while the ship was passing the step, and zero the
rest of the time. As in hydraulic theory, for a narrow channel the ship did not “sense”
the presence of the approaching step.

The results were quite different for a wider channel, with obvious departures from the
hydraulic theory. Figure 4.2 shows the vertical force on the ship as a function of time as
it passes the step. In this case the channel’s width is double the shiplength. With two-
dimensional theory the axes cannot be scaled in the same general way as for hydraulic
theory. Instead we have used arbitrary values of the hull and channel parameters, with
the relevant parameters affecting the form of the solution being w/L = 2.0, F; = 0.143
and Fy = 0.165.

-0.5 T T

-0.6

-0.65

-0.7

Bow passes step Stern passes step
time

Figure 4.2: Vertical force for a ship passing a step depth change to shallower water, with
w/L=2.0

We see that in the wider channel the ship does sense the step before the bow reaches
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it, as was predicted using the analytic image method of §4.2. Up until the bow reaches
the step, the vertical force agrees with that predicted using the image method (equations
4.48,4.49).

For the wider channel, the flow is governed not by wave production (which is negligible
here) but by the effect of having a constriction in the channel. This decreases the flow
speed while the ship is moving toward or away from shallow water, and increases the flow
speed when the ship is moving toward or away from deeper water. There is therefore a
smaller downward force as the ship approaches the step and a larger downward force as
the ship is moving away from the step.

The small spikes in the vertical force before the ship reaches the step are due to small
irregularities in the initial conditions. Without any damping mechanism, these irregu-
larities radiate out toward the channel walls at the natural wave speed y/gh and reflect
back to periodically affect the flow at y = 0.
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0.006
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0 1 1
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Figure 4.3: Bow-up trim moment for a ship passing a step depth change to shallower
water, with w/L = 2.0

For the wider channel, the trim moment (Figure 4.3) is still bow-up while the ship is
passing the step. Due to numerical error, the trim is apparently non-zero before and
after the ship passes the step; this is spurious. However, we see that even for this fore-aft
symmetric hull there is a small bow-up trim both before and after the ship passes the
step.
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4.4.4 Bow and stern sinkage

As discussed in §3.3.1, for a ship passing a sudden depth change we should use dynamic
ship motion methods to determine the transient bow and stern sinkage of the ship. How-
ever we can gain some insight into the form of the bow and stern sinkage by considering
the static equilibrium conditions (2.58) which are valid if changes in sinkage and trim
occur sufficiently slowly.

Solving for the transient midship sinkage and trim using equations (2.58), the bow and
stern sinkage are then given by s F /6 respectively. These are plotted in Figure 4.4 for
the case with w/L = 2.0. For the narrow channel, the results were the same as in Figure
3.7.

-0.12

-0.2

-0.24 | / -
N //

-0.26 L L
Bow passes step Stern passes step

time

Figure 4.4: Bow and stern sinkage for a ship passing a step depth change to shallower
water, with w/L = 2.0

We can ignore the spurious difference between the bow and stern sinkages before and after
the ship passes the step, which is due to the small ongoing error in the trim moment.
The effect of the strong bow-up trim is witnessed in the small bow sinkage and large
stern sinkage while the ship is passing the step. Again, because the stern is not yet into
the shallow water when it experiences the large sinkage, it is not in excessive danger of
striking the sea floor. Once the stern reaches the step its sinkage is only slightly greater
than in the shallow-water steady-state condition.
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4.5 Conclusions

In this chapter we have extended slender-body shallow-water theory to describe unsteady
flow past a ship in a channel of non-uniform depth. The resulting theory is valid for
channels of any width, including open water. For narrow channels it reduces to the
unsteady hydraulic theory developed in Chapter 3.

The two-dimensional nature of this theory means that it is necessarily more complex than
the hydraulic theory, both mathematically and numerically. However, using the method
of images it was possible to find analytic solutions in the case of a ship approaching a
step depth change.

For a ship in a channel, stable finite-difference methods were developed which are valid
for smooth or sudden depth changes. Using this method, we solved the problem of a ship
passing a step depth change in a channel. The results agreed with the analytic results
while the ship was approaching the step, and also agreed with the hydraulic theory in
the case of a narrow channel.



Appendix A

Nomenclature

Coordinates

X Streamwise coordinate in body-fixed coordinates

x Streamwise coordinate in earth-fixed coordinates

Y Transverse coordinate, ship centred on y =0

z Vertical coordinate, undisturbed free surface at z =0

Ship and channel dimensions

L Ship length, equal to 27.

B Ship’s local waterline beam, function of X.

Brnax  Maximum beam

S Ship’s local cross-sectional area, function of X.

Smax Maximum section area

A Ship’s displacement (volume below the waterline when at rest)
Aw  Waterplane area [, B(X)dX

My = [ XB(X)dX

Iy =/ X?B(X)dX
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h Undisturbed water depth
w Channel width at the undisturbed waterline
So Channel’s undisturbed cross-sectional area
A Cross-sectional area taken up by water passing ship
Parameters
U Ship speed (earth-fixed coordinates) or
Free stream velocity (body-fixed coordinates)
g Acceleration due to gravity, = 9.8 m/s?
Ey, Depth-based Froude number U/\/gh
B =1-R
v Dispersion parameter h%/3
Outputs
P Total velocity potential in body-fixed coordinates
q Fluid velocity in body-fixed coordinates, = V®
q Scaled streamwise velocity ®x /U (for nonlinear flow)
u Streamwise velocity perturbation ®x — U (for linearized flow)
[0) Total velocity potential in earth-fixed coordinates, or
Disturbance velocity potential in body-fixed coordinates
P Pressure excess above atmospheric
P Pressure excess above hydrostatic
Z Upward vertical force on ship
M Bow-up trim moment
¢ Free surface height above z = 0

144
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C~ Scaled free surface height (/h
S Midship sinkage

§ Scaled midship sinkage s/h

o Local sinkage, function of X
o) Scaled local sinkage o/h

0 Bow-up angle of trim

Show  Bow sinkage

Sstern  Otern sinkage

Fourier transforms

B(k) = [ B(X)e*XdXx

B*(k) = [%, B(X)e **dX (complex conjugate)

B(X) = 5= [% B(k)e *Xdk (inversion)



Appendix B

Some Mathematical Derivations

B.1 The basis of hydraulic theory

Hydraulic theory assumes that the only significant fluid velocity component is in the
direction of the ship’s motion, and that this velocity is almost uniform across the channel.
If the fluid velocity in an earth-fixed frame of reference is V¢ = ¢11+ ¢oj + g3k, this states
that ¢o,¢93 < ¢ and ¢; = ¢1(z,t) only. The requirements for this assumption to be valid
can be found as follows.

The continuity equation written in the form

oq 0qy % _

8$+8y+8z

) )

% _ (X

0qr ox

) )

° _ (2],

0qr ox
where dz represents a finite change in z, and similarly for the other quantities. So in
order for ¢ and g3 to be small compared to g¢; we require that the y and z length scales

be small compared to the x scale. That is, the channel width and depth must be small
compared to the ship length. In this case we have

q2 w
2 - o)
q1 L
qs3 h
2 - o(3).
Q <L>

If the surface of the ship’s hull in y > 0 is defined by y = Y (X, 2z), the kinematic condition
on the ship’s hull satisfies

g = U+ q)Yx + ¢3Y, ony=Y(X,z2).

tells us that

124
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Looking at the magnitude of the terms tells us that for g < U we require Yy < 1. Note
that no such restriction is placed on Y,. Therefore the ship can have any cross-sectional
shape, provided that this shape varies slowly in the X-direction. A necessary criterion
for this to be satisfied is that S'(X) must be small, where S(X) is the hull section area.

The kinematic condition on the sea floor
g3 = _QIhw - Q2h'y on z = —h(.ﬁ,y)

requires h, < 1 for g3 < ¢.

If, for simplicity, the channel walls are positioned at y = +iw(z, ), the kinematic con-
dition on the side walls states that

1 1
= i§ (rwg + gzw,) ony = tyw(z,z) .

For ¢» < ¢1, therefore, we require that w, < 1.

Again, no restrictions are placed on h, or w,. Therefore the channel can have any cross-
sectional shape, so long as it varies slowly in the z-direction. For simplicity we will
assume that the side walls are vertical at and near the free surface. This means that
changes in the cross-sectional area taken up by the water are proportional to changes in
the free surface height. This assumption may be dropped in the case of linearized flow
where changes in the free surface height are small. However we will still require that
the side walls are not excessively sloping at the free surface; otherwise, changes in free
surface height would be accompanied by large variations in gs.

We have shown that for ¢o, g3 < ¢; to hold we must have w < L, h < L and the shape
of the ship and channel must vary slowly in the z direction. We can now show that if
these conditions are satisfied the flow will be almost uniform across the channel.

Using the irrotationality conditions

ou _ o
oy Oz
O _ g
dz Oz’

we can deduce that the fractional variation of ¢; in the y direction is
) oy o w2
£:0<_y2> :0<(_) )
a1 0T q L
and that the fractional variation of ¢; in the z direction is
§ 820 h\?
ﬂ:0<_§> -0 <_>
q1 0T q L
These quantities are both sufficiently small that ¢; may be considered constant across
any cross-section x =constant.
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With ¢; = ¢1(z,t) and ¢» and g3 negligible, the velocity potential ¢ must be a function of
x and t only. We can now use the Bernoulli equation to show that the free surface height
(¢ is also a function of x and ¢ only. The Bernoulli equation as used here states that the
quantity

pP 1
—+9z2+ 5|VeI* + ¢
p 2
is constant throughout any simply-connected fluid domain if the flow is incompressible

and irrotational. If we apply the Bernoulli equation on the free surface z = ¢ and equate
it to the value far ahead of the ship (where P, (, ¢; and ¢, are all zero) we obtain

1
9C+§qf+¢t=0-

Since ¢ and ¢; are functions of z and ¢ only, ( must also be a function of z and ¢ only.
Therefore the continuity and Bernoulli equations, which are sufficient to determine the
flow, depend only on x and t.

In summary, we may make the approximation of one-dimensional flow provided that the
channel dimensions satisfy
w <K L

h< L

wy K 1

hy <1
and the hull surface y = Y (X, 2) satisfies

Yy <1,
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B.2 Finite-width and open-water TSW'T agree in the
infinite-width limit
We shall show here that the finite-width TSWT equations (2.73) for force and moment

agree with the open-water TSWT equations (2.53) and (2.54) in the wide-channel limit.
We shall do this by showing that

lim [~ L) coth{%u} dk = /°° KT o (B.1)

w—oo J_ o A —00 A

for any smooth bounded function f(k) that tends to zero as |k| — oco. For the vertical

force equation, f(k) = S(k)B*(k), while for the moment equation, f(k) = S(k)XB" (k).
In the open-water theory, A must be defined by equation (2.43); for finite width it has the
same definition except that its sign is irrelevant. Here, however, we shall use the same
definition (2.43) for convenience, i.e.

VBkZ — k1 for Bk —~vk*>0
A=< —i/vk* — Bk? for  Bk>—~vk*<0and k>0 (B.2)
+i/ykt — Bk? for  Bk®—~vk*<0and k<O0.

We shall now study the finite-width integral and show that it limits to the open-water

integral in each of the three ranges [—\/ﬂ/’y, \/ﬂ/’y], [\/ﬂ/’y, oc| and [—o0, —/3/7] for
subcritical flow. We shall then extend the proof to supercritical flow.

Subcritical case

When |k| < 4/B/7, A is real positive, so that as w — oo, coth(Aw/2) — 1. Therefore the
limit (B.1) is true in this range.

When k > /3/v, we put A = —ic, with

a = \/vk* — pk? (B.3)

being real positive. Therefore, using coth(—ifl) = icot 0,

/\ZW kQJ;\(k) coth {)\Tw} dk = /\ZW —kQJ;(k) cot {%} dk . (B.4)

At this point we shall change variables and perform the integration in the a—variable,
which is a monotonically increasing function of & for £ > ,/3/7. Differentiating (B.3)

gives

20da = (4vk* — 26k) dk , (B.5)
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so that the integral (B.4) can now be written

/Ow%cot{?} do . (B.6)

We recall that this integral is made up of the Cauchy principal value integral plus the
sum of the arc integrals around each of the poles.
Cauchy principal value contribution

The poles in cot(aw/2) are equally spaced at the points «,, = 2n7/w for integer values of

n. Note that —2vk?® + Bk is non-zero in the range of integration (k > /3/7). We write
the integral as a sum of integrals over ranges which have the poles as their midpoints:

> @ty K f(k) {aw}
—— 55 Cot 4 — B.
Zl /<2n—1>£ ET R I R (B

/0% %cot{%} da

becoming negligible as 7/w — 0.

n=

with the error term

As w — o0, each range of integration in (B.7) becomes a small region either side of
o = a,, so that we can expand in a Taylor series around «,, to give

ow aw) W QW
tan{T} ~ tan{ ; }+§sec2{ ’; }(a—an)

= % (@ —ay) . (B.8)

Therefore as each range of integration shrinks to zero size the sum (B.7) becomes

(2n+1) 2 kf(k) 9
/(2n—1)% (—=27vk2 + B) w(a— ay) dor. (B.9)

o0

n=1
We can now use the Taylor series result that

c+d
lim 9(e)
0=0Je—§ ax—cC

do =26 ¢'(c)
to evaluate each of the integrals in (B.9) as 7/w — 0, giving

29X 2t d [ kfk)
w2 wida (TW n 5)

n=1

(B.10)

a=an

This is a rectangle rule approximation to the integral

2 rod [ kf(k)
E/o - (7—2vk2+ﬂ> da (B.11)



149

which becomes exact in the limit as Aa = 27/w — 0. This integral can be simply
evaluated to give

2 [ kfR) 17 _ 2] kf) 177
5[—2’%”5]&:0 - l 2vk? +ﬂ]k R (B-12)

We know that f(k) — 0 as k — oo, so the same must be true of k f(k)/(—2vk* + 3).
The expression (B.12) then becomes

2 [£ (V5

— [M] . (B.13)

w | VBY

Since f(k) is a smooth bounded function of k, this expression limits to zero as w — oo.
Therefore the Cauchy principal value part of the integral (B.6) is zero in that limit.

Arc integral contribution

The arc integral contribution to the integral (B.6) is made up of the sum of the arc
integrals around all of the poles «,. Firstly we must decide which side of these poles the
path of integration is to pass. In §2.3.5 we showed that the radiation condition dictates
that the path of integration should pass above the poles in the complex k—plane. So
which side of the poles should it pass in the complex a—plane?

To determine this, we let
k =k, +ik;

a=qa, +1i0;

near each pole, where k., > \/3/v,a, > 0 and both k; and «; are small quantities as the
pole is traversed. Since we are passing above the poles in the complex k—plane, k; > 0.
We must now find whether «; is positive or negative.

The relation
o? = vk — pK?

becomes
of — of +20p051 = =3 (k} — k7 + 2k, ki) + ((k2 - k§)2 — 4k2K? + Ak, ks (K7 — k7) z) :
Equating imaginary parts gives

oy = ki (29 (K2 = k2) = B) (B.14)

Since vk? — 3 > 0 and k; is small, the term inside the square brackets is positive. Since
k., o, and k; are all positive, a; must also be positive. Therefore we must pass above the
poles in the complex a—plane.

The sum of the arc integral contributions to (B.6) is written

Z/n —27k2+ﬂ cor {75} der (B.15)
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where C,, is a small semicircular arc passing above the singular point «a,, in the complex
a—plane. Using the residue theorem, these arc integrals can be evaluated to give

i —miTes <% cot {%} ; ozn) . (B.16)

n=1

Using the expansion (B.8), this becomes

X 27 k f(k)
— — | —=— . B.17
anl w (—Q’YkZ—{—ﬂ) a=an ( )
In the same way as we did for expression (B.10), we can write this as
[ k f(k)
— ———— | d B.18
2/0 (—27/{2 + ﬂ) “ ( )
in the limit as 27 /w — 0. Returning to the k—variable using the differential form (B.5),
we obtain 2
i / k) g (B.19)
VBl @
or, replacing A = —ia,
o E2f(k
I )dk (B.20)

\ B/ A

in accordance with the open-water result.

When k& < —y/(/7, A is imaginary and given by equation (B.2) as A = ia. Here « has
the same definition as before, i.e. a = \/vk* — k2. Therefore the analysis is the same
as for k > 1/3/v except that A is now of opposite sign.

Firstly, in a similar manner to expression (B.4), we have

—o0 )\ 00 [0

Since the same differential substitution (B.5) is used, the integral (B.21) becomes

0k f(k) {aw}
—————cot{— ¢ da. B.22
/oo —oykz+p 2 J (B-22)
Note that « is still monotonic in k, but k£ is negative here. Alternatively, this can be
written Lk
_kI(R) cot {%} do . (B.23)
0o 2vk*-0 2

The evaluation of the Cauchy principal value contribution is exactly the same as for
k > +/[/7, except that the integrand is multiplied by -1. Therefore this contribution also
vanishes in the w — oo limit.
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In evaluating the arc integrals, equation (B.14) still holds for determining the sign of «;
in this case k, is negative so a; must also be negative. Therefore the path of integration
must pass below the poles in the complex a—plane. The sum of these arc integrals is now
given by

io:lm' res (;]qéi(ﬁ)ﬂ cot {%} ; an) (B.24)

which is the same as equation (B.16) for & > (/3/~. The analysis continues unchanged
to reach equation (B.18), whereupon substituting back in for & yields

k*f (k)

il dk B.25
/\/ﬁ/v o ( )
or
—\/B/ 2
—i/ VI KT o (B.26)
—0o0 (0%
Replacing A = i« this becomes
—\/B/ 2
/ Ok J;(k) dk (B.27)

in accordance with the open-water result.

Supercritical case

When 3 < 0, A is imaginary for all £; it satisfies

\ = —i/vkT — k2 for k>0 (B.28)
| ikt — Bk? for k<O0. ’

As such, we put A = —ia if £k > 0 and A = i« if £ < 0. The analysis for £ > 0 is the
same as for £ > 1///7 in the subcritical case, with the same monotonic substitution for
a being made. Here however the range of integration for & is (0, 00). One consequence of
this is that the Cauchy principal value part of the integral now tends to zero even faster;
the supercritical equivalent of equation (B.12) is
k=00
2 IM] (B.29)

w | —29k*+ B],_,
which is zero.
In summing the arc integral contributions we note that oy in this case occurs at k£ = 0;

the residue is zero at this point (from equation (B.16), so the summation is still valid.
The rest of the analysis goes over unchanged, and we have

R [\ e KR
JEEO/O , coth{T} dk _/0 = dk
lim ° KS(K) coth {)\_w} dk = /O K2 (k) dk

w—00 J _ by 2 -0 A

so that the two theories agree in the w — oo limit for supercritical flow also.
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B.3 FDT and TSWT agree in the shallow-water limit

As we saw in the numerical results of §2.6, FDT and TSW'T give very similar results
for midship sinkage at small values of h/L. Here we show analytically that the theories
become identical in the shallow-water limit when F}, is close to 1. We were not able to
show this for general F}, because of the complicated manner of convergence of the (k)
integral; however, it seems likely that the theories are equivalent at all Froude numbers
in the shallow-water limit.

The vertical force and trim moment expressions according to the two theories are

2 oo -
FDT: 7 = —% / K2Q(k)S (k) B* (k) dk
pU? o 2 < *
M= / K2Q(k)S (k)X B" (k)dk (B.30)
where p
*° q q
k) =2 [ 1 B.31
(k) ikl Vg% — k2 [ * F2k?h — q tanh(gh) (B.31)
pU? oo k2
TSWT: Z=—-—"— — B*
SW el B\ S(k)B*(k)dk
pU? = k% _ .
= — —S (k)X B (k)dk B.32
[ swxB ) (B.32)
where
I (B.33)
The sign of X is given for different values of k, 5 and v by equation (2.43).
Writing C'(k) = w/(Ah), the theories will agree if and only if
Q(k) - C(k) as h—> 0. (B.34)

Note that we cannot directly use a small—h expansion in the integral (B.31), as this
would result in a divergent integral; it must be dealt with carefully in order to retain its
convergence.

Since Im{Q(k)} and Im{C(k)} are both odd in £, and Re{Q2(k)} and Re{C(k)} are both
even in k, we need only consider £ > 0 in the following proof.
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Subcritical flow

When g > 0, C(k) is given by

C(k) :{ e <voh (B.35)
W\/Tﬂkﬁ when k£ > ,8/’)/

Showing that ky — +/5/7y

We know that (k) is pure-real for k£ < ko, and C(k) is pure-real for k < 4/3/v. Both

have imaginary parts for higher values of k. We must first prove that ky — /3/v as
h—0and 8 — 0.

ko is defined by
tanh(koh)

=F;. B.36
k()h h ( )
Since Fj, is close to 1, kgh will be small. Using the expansion
23
tanh(z) — = — 5 asz — 0, (B.37)

(B.36) becomes

koh — \/3(1—F?) as(3—0 (B.38)

so that koh = O(BY2). As B — 0, (B.38) gives for ko

1

773 (B.39)

ko—)

as required. Note that we were not required to take the limit as h — 0; this result holds
at all depths as Fj, — 1.

Showing that Q(k) — C(k) for k < k

To show that Q(k) — C(k) for k < ko, we write Q(k) as
Q(k) = =2(I + L) (B.40)

where

©  gdg [ 1 — tanh(qh) ]
Il -

k@ — k2 | F2k?h — q tanh(gh)

21.2
hEyk ] (B.41)

L= " dg
T ) @& =k | F2k?h — q tanh(gh)
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Both of the integrals in (B.41) exist separately for positive values of h. We see that as
h — 0, the numerator of I; is O(1) while that of I, is of O(h); therefore I; will formally
dominate I5 in this limit. Using the change of variables v = v/¢? — k?, I; becomes

c© 1 — tanh(gh)
F2k?h — q tanh(qh)

I = v. (B.42)
0

In the limit A — 0, the numerator of the integrand in (B.42) tends to 1 except for very
large ¢, in which case it tends to zero sufficiently fast for the integral to converge. We may
therefore replace the numerator by 1 in the small-A limit, provided that the corresponding
small-h expansion of the denominator still gives a convergent integral.

Using the expansion (B.37) for small (¢h) then gives
dv

I / > B.43
V7)o FPREh — gt + Lhigh (B.43)
or, on substituting for v,
1 oo dv
I = - / . B.44
! hlo ~v*— (1 —2vk?)v? — Bk? + ~k* ( )

This integral can be solved exactly by closing the contour in the complex v-plane. We
write it in the form

1 00 dv
I = / B.45
L ohy S P B a) (7~ (4 a) (B.45)
where
1
a = — —k?
2y
1 F2
2 - h
A (B.46)

and we choose b to be positive. Since in the small 3,y limit k& < kg implies that k? < 3/,
we see that a is positive in this case. Also, since

W —a? = % (8K* — k") (B.47)

b — a is positive. Therefore the poles in (B.45) occur at v = +v/b+ a, +iv/b — a. If we
consider the integral as a Cauchy principal value integral, the residues on the real axis
will cancel each other when we deform the contour beneath each of them.

Closing the contour in a large semicircular arc around the lower half of the complex
v-plane then tells us that

. 1
I, = —2mi 2h res { 2+ (b—a)) (v?—(b+a))
—Ti -1
T hy divh-a o

; —i\/H}
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In the limit as v — 0 and Fj, — 1,

1
b— g
S L (B.49)
a 2 :
so that y
b—a=——0 4 Bk — Akt (B.50)
b+a
and (B.48) becomes
—Tr
I . B.51
L OB — Akt (B-51)
Hence, from (B.40),
k) = — (B.52)
h/BRZ — Yk '

in agreement with C'(k).

Showing that Im{Q(k)} —-Im{C(k)} for k > k

C(k) is pure imaginary for k& > (/3/vy. To show that the imaginary parts of Q(k) and
C(k) match for k > ko we use

—2mqq

Im{Q(k)} = (B.53)
\/ ¢ — k? (qohsechQ(qoh) + tanh(qoh))
with ¢q defined by
goh tanh(qoh) = h*FPk* . (B.54)

If we assume that Fj, is close to one then we know from (B.38) that koh may be considered
small. Similarly, since Fj}, is close to one, gy is close to kg, so that goh may also be
considered small. Therefore, using the expansion (B.37) in (B.54) gives

g5 — Fpk® + yFyk* (B.55)
so that
@ — k* = (Ff — D)K* + yFpk* . (B.56)
For F}, close to one, this limits to
@ — k> — —BE* + k. (B.57)

Therefore in the limit as A — 0, (B.53) becomes

—27’(’(]0

V—=Bk? + vk* (qoh + qoh)
= 7 (B.58)
hy/—Bk? + vk*

Im{Q(k)} —

in agreement with C'(k).
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Showing that Im{Q(k)} dominates Re{Q(k)} for k > k

For k > ko, Re{Q(k)} can again be evaluated using (B.40) and (B.41). We note that ||
for k < ky is of the same order in 3 and h as |Im{Q(k)}| is for £ > ky. Also, |I5| for
k < ko is of smaller order than |I|; therefore |Im{(k)}| must dominate |I5| for k& > k.
We now show that the leading order term of I, which is the same order as [Im{2(k)}|,
is identically zero for k > ko, so that Re{€2(k)} can be neglected for k > k.

For k > ko, I, is again given by (B.45) and (B.46) in the small-A limit. In this case we
have

1
a > 0 for E? < —
2y
1
b 0 f k? )
> or < 4*)/Ff

(B.59)

So provided that k* < 1/(4vF?), both a and b are real and positive. As v — 0 this is
true for all k. For k > ko, b — a® is negative from (B.47); therefore b — a < 0 and all
four poles lie on the real axis. Taking the same contour integral dicussed previously for
I, but in this case passing also beneath the other two poles on the real axis, we see that
all residues cancel and this leading term of I; is zero.

Although I; is no longer zero for k* > 1/(4yF?), the integrand in (B.30) dies away
sufficiently quickly that the £ — oo behaviour of Q(k) is irrelevant.

Supercritical flow

In this case C(k) is given by .
—im
hv/vk* — (k2
for all £ > 0. Q(k) has real and imaginary parts for all £ > 0. The proofs that
Im{Q(k)} —=Im{C(k)}, and that Im{Q(k)} dominates Re{€2(k)}, are the same as for
subcritical flow.

O(k) = (B.60)
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B.4 Unsteady slender-body shallow-water theory
agrees with unsteady hydraulic theory in the
narrow-channel limit

For simplicity we shall assume that the channel varies only in the z—direction, although
the proof can easily be extended to channels of arbitrary depth if the slope A, is inde-
pendent of w.

We start with the equation of unsteady slender-body shallow-water theory, namely

% = (hn), + (hdy), | (B.61)

subject to the boundary conditions

_US'(z +Ut)

5 ony=20

Py

and
¢y =0 ony=w/2.

Introducing the scaled variable Y = 2y/w, equation (B.61) for ¢(x,Y,t) now becomes

Pu 4h
2= (ho, i B.62
o= (hda), gy (B.62)
with boundary conditions
oy (z,0,t) = %S'(x + Ut)
4h
and
gf)y(.T, 1,t) =0.
We now write ¢y as a combination of a linear function of Y and a correction term )y :
Uw ,
oy (z,Y, 1) = ES (x4+Ut).(1-Y)+ 9y . (B.63)

The boundary conditions require that 1)y be zero on y =0 and y = w/2.
Integrating equation (B.63) gives

8z, Y, 1) = Z—Z)S'(x +UY). (y - Y;) o (B.64)

where the constant of integration is contained in ).

We shall now show that the function v is independent of Y in the small-w limit and
dominates the first term in equation (B.64).

Substituting the expression (B.64) into the governing equation (B.62) gives

4 ! T — T Y2
Pt — ()t mgtpyy =+ {s gy <M> s’} (Y - —) (5.65)
g w w 4 2

h h?
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where S = S(z + Ut). In the limit as w — 0 this becomes, to leading order 1/w?,

Yyy =0.
Since 9y = 0 on both boundaries it must be zero everywhere, so that ¢ = (X, t) only.
Now to leading order 1/w, equation (B.65) shows that ¢ must be of order 1/w and satisfy

Y Us’
2= (), - 2 (B.60)

Therefore v formally dominates the first term in equation (B.64) as w — 0, so that
o¢(zr,Y,t) — (x,t) in this limit. But 3 (x,t) satisfies equation (B.66), which is the
unsteady hydraulic formula derived in Chapter 3. Therefore the unsteady slender-body
shallow-water solution ¢ agrees with the unsteady hydraulic solution % in the narrow-
channel limit.
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