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Abstract

We present a method for computing steady nonlinear hydraulic flow past a ship in a channel. This
method recognizes the fact that allowing the ship to sink and trim will give a different flow from
that obtained by fixing the ship vertically in its rest position. Actual sinkage and trim, as well as
limiting Froude numbers for steady flow, are computed.

1 Introduction

For a slender ship whose beam and draught are small compared to the width and depth respectively
of the channel in which it is travelling, the flow velocity perturbations due to the presence of the
ship are small, and the flow may be linearized. Sinkage and trim can then be calculated by first
solving the flow field with the ship assumed unable to move vertically.

The ship sinks and trims by a small amount such that the hydrostatic nett vertical force and
moment on the ship vanish [7]. This assumes that the flow field will change negligibly when the
ship is allowed to squat.

In linearized flow this is an acceptable approximation, because the difference in flow velocities
betweeen a ship fixed in its equilibrium position and the same ship allowed to squat is small, of the
same order as other terms already neglected.

However, if the ship’s beam and draught are comparable with the width and depth respectively of
the channel, flow velocities are no longer small and we cannot make this approximation. The flow
field must be solved as a function of the ship’s sinkage and trim. As these quantities are unknown
in advance, a set of nonlinear simultaneous equations will result.

Although the problem is solved here using one-dimensional hydraulic theory, the method for cal-
culating sinkage and trim is applicable to any nonlinear theory for ship dynamics.


TimNic
Text Box
Gourlay, T.P. 1999 The effect of squat on steady nonlinear hydraulic flow past a ship in a channel. Schiffstechnik 46, No. 4, pp. 217-222.


2 Problem Formulation

For simplicity we take the ship to be moving at constant speed U, down the middle of a rectangular
channel of constant width w and constant undisturbed depth h. In fact, the theory may be applied
to channels of arbitrary cross-section, provided that they are vertical-sided near the waterline. In
that case h is the average depth across the channel, and w is the waterline channel width.

We consider a frame of reference that is fixed relative to the ship, such that the coordinate X is in
the direction of the free stream. The ship’s bow is at X = —/ and stern at X = £, where 2/ is the
shiplength.

The ship’s local waterline beam and local cross-sectional area at position X are B(X) and S(X)
respectively, both of which are defined on [—Z, £].

3 The Hydraulic Equations

In hydraulic theory [2], it is assumed that changes to the free-stream velocity are greatest in the
direction of the free stream, so that other velocity components may be neglected. This is justified
if S and B are slowly-varying functions of X, and the channel is narrow and shallow compared to
the ship’s length. It also assumes that the streamwise velocity is uniform across the channel, which
follows from the first assumptions by irrotationality.

We will denote the streamwise flow speed as yU, where v = (X)) is constant across any particular
cross-section X =constant. The height of the free surface above the undisturbed level is defined as
Bh. Similarly, from the previous assumptions, # = B(X) is constant across the whole width of the
channel. Neither v — 1 nor 8 are small in general.

The squat of the ship is measured by its midships sinkage sh and its bow-up angle of trim 6.
Therefore the downward displacement of any station X on the ship is sh + X tan €, which we will
define as oh.

The equation of continuity for steady one-dimensional hydraulic flow is obtained by matching the
flux across any cross-section X = constant to the flux far upstream. This gives

YUA(X) = US,

where Sy = wh is the cross-sectional area taken up by the undisturbed water upstream and A(X)
is the local cross-sectional area taken up by the water as it passes the ship. This area has the form

A(X) = Sy — S+ (w — B)Bh — Boh

where the Boh term gives the decrease in area available due to the local sinkage oh. We have
assumed here that the ship and channel walls are vertical at the waterline. The continuity equation

then simplifies to
'yl—i—ag-l-(l—E)ﬁ]:l (1)
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The Bernoulli equation applied on the free surface gives
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where g is the acceleration due to gravity. This can be simplified to
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where F}, is the depth-based Froude number F}, = U/+/gh.

If o(X) is known, the continuity equation (1) and Bernoulli equation (2) constitute two simultaneous
equations which can be solved for the unknowns § and y at each value of X. Specifically, eliminating
v gives the following cubic equation for the scaled free surface height 5:
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The cubic equation (3) can have between one and three real roots, so we must be careful to choose
the correct root.
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The real root which is always present represents a backflow (v < 0) of negative cross-sectional area.
This is unphysical and inadmissible. In order to find the correct solution, we can plot the continuity
relation (1) and Bernoulli equation (2) for various values of Fj, and look at the intersection points.
This is depicted in Fig. 1, with sample values for B/w, S/Sy and ¢ having been chosen. Only the
physically admissible branch v > 0 is shown.

Bernoulli, Fj, = 1.8

ernoulli, F, = 1.0

Bernoulli, Fj, = 0.5

Continuity

v

Figure 1: Typical continuity and Bernoulli relations between scaled free surface height 8 and scaled
velocity v



We see that at low F}, (e.g. F,=0.5 in Fig. 1) there are two intersection points in the region vy > 0,
both of which have v > 1. One of these represents a greatly accelerated flow past the ship, with a
greatly depressed free surface. Considering small changes in the free surface height, with continuity
still satisfied, we can show by surface pressure arguments that this flow is statically unstable. The
other intersection point, which represents a slightly accelerated flow with a slightly depressed free
surface, is statically stable and the root we require. This is termed “subcritical” flow.

The two intersection points correspond to the “hydraulic jump” observed in channels [6]. This is a
sudden transition from a high speed, low free surface height flow to a low speed, large free surface
height flow. Although both of these flow regimes satisfy the Bernoulli and continuity conditions,
the latter only occurs downstream, with energy being lost across the transition. This is a special
case of the problem solved here, in which no ship is present so that B/w and S/Sy are zero.

For intermediate values of F, (e.g. F,=1.0 in Fig. 1) there are no intersection points with v > 0.
This is the “critical” region in which no steady hydraulic flow exists, a situation which will be
discussed in Section 6.

When Fj, is large (e.g. F,=1.8 in Fig. 1) there are again two intersection points in the region v > 0.
In this case, however, both roots have v < 1. As for subcritical flow, we can show using surface
pressure arguments that only the root with the higher free surface and lower speed is stable in a
static sense. This ‘supercritical” flow which we shall consider is therefore significantly decelerated,
with a large free surface height. It is of less practical interest than subcritical flow for ships in
narrow channels, as a very high speed is normally required for steady supercritical flow to exist.

So if o(X) is known, we can determine the correct profile of 5(X) using (3). However, o(X) is not
known in advance; the two equations which determine its two parameters s, are the vertical force
and trim moment equilibrium equations. Since for hydraulic flow the pressure is hydrostatic, these
can be written as

4

/ (0 +B)BdX =0 (4)
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and

[ 1 (o + ) XBdX =0 (5)

(3),(4) and (5) can now be solved for s and 0, given that o = s + (X/h) tan 6.

For comparison we will also be solving for sinkage and trim using the “fixed-ship” method, as used
in linearized theory and as an approximation in nonlinear hydraulic theory [3]. This is done by
setting o = 0 in (3) to find 3(X), and then solving (4) and (5) simultaneously for s and 6.

4 Squat of a Fore-aft Symmetric Ship

For a fore-aft symmetric ship, the hydraulic theory predicts zero trim angle (§ = 0) whenever a
steady solution exists. o is therefore constant in X, and we only require the force balance equation
(4) in addition to the cubic (3) for 8(X). Since we cannot solve (3) and (4) explicitly for o, we
consider the scaled nett vertical force function

fo)= [ (o+8) Bax ©)
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which we require to be zero. Guessing a value for o gives the corresponding profile of 3(X) by
solving (3) at every position X. This is then used in (6) to find f(o). If we do this with two
different guesses 0 = 0,01 we can use the secant method [4] to find a better estimate o = o9,
namely

oy = Ulf(UO) — UOf(Ul) (7)
floo) = f(o1)
Discarding whichever of the previous estimates o¢ and oy is further away from the new estimate
o2, we can then continue the process until the converged solution for o and corresponding profile
of B(X) are found.

4.1 Example for a Wigley Hull

Let us consider a Wigley hull [5] of length 200 metres, maximum beam By, = 40 metres and
constant draught T' = 9 metres. It is travelling in a channel of width 100 metres and depth 12
metres. Therefore in this situation we have By,.;/w = 0.4, with a maximum blockage coefficient
Smaz/So = 0.2.
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Figure 2: Scaled sinkage relative to water depth, as a function of Froude number, for a Wigley hull
with Bpag/w = 0.4, S/Sp = 0.2 . (Left) subcritical, (right) supercritical.

Fig. 2 gives the scaled sinkage, relative to water depth h, of the Wigley hull for a range of subcritical
and supercritical Froude numbers. This is found using the iterating method just described, as well
as the fixed-ship method for comparison.

We can see that the fixed-ship method provides a good approximation when F}, is small. This is
to be expected because § and ¢ are also small in this case and linearization is justified.

However, for larger subcritical F},, there is a marked increase in the sinkage from that predicted
using the fixed-ship method. This is because when the ship sinks downwards, the blockage is
effectively increased. For large subcritical sinkages, this effect becomes increasingly apparent.

For example, we see that when Fj, = 0.38 (corresponding to a ship speed of 4.1 m/s or 8.0 knots) we
have a scaled sinkage s of 0.0423, compared to 0.0374 for the fixed-ship method. This corresponds
to an actual sinkage of 0.51 metres, compared to 0.45 metres as predicted by the fixed-ship method.



When Fj, = 0.49 (corresponding to a ship speed of 5.3 m/s or 10.3 knots) the sinkage is 1.28 metres,
compared to only 0.89 metres as predicted by the fixed-ship method.

Supercritical results for the same ship and channel configuration are also shown in Fig. 2. For
supercritical flow, the sinkage is negative, corresponding to an elevation of the ship. Since steady
supercritical flow in this case only exists for the unrealistic range Fj, > 2.02 (corresponding to
U > 21.9 m/s or 42.6 knots), the elevations are extremely large. However, we notice that the
fixed-ship method again underestimates the magnitude of the sinkage.

5 Squat of a General Ship

For a general non-fore-aft-symmetric ship, we use a two-variable secant method to solve simulta-
neously for the quantities s and 6, using (3),(4) and (5). Only subcritical results are shown here,
as steady supercritical flow can not exist at practical speeds for the ship and channel considered.

5.1 Example for a Marad Hull

We consider a Marad P-Series hull of the same length, draught and maximum beam as the Wigley
hull described in section 4.1, travelling down the same channel. This ship is much more block-like,
so the maximum blockage coefficient is Spqz/So = 0.297.
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Figure 3: Scaled midships sinkage (left) and bow-down trim (right) for a Marad hull, with
Bmaz/w = 0.4, Smas/So = 0.297, 2¢/h = 200/12

Fig. 3 shows the scaled midship sinkage and bow-down trim of the Marad hull, using both the
iterating method and the fixed-ship method. We can see again that the fixed-ship method greatly
underestimates the sinkage for larger Froude numbers. Similarly the trim, which is always bow-
down, increases markedly from the fixed-ship prediction when we allow the ship to squat.

From the graphs we see that when F} = 0.38 (corresponding to a ship speed of 4.1 m/s or 8.0
knots) we have a scaled midship sinkage s of 0.116 and bow-down trim angle of 0.376 degrees. This



gives a stern sinkage of 0.736 metres and bow sinkage of 2.05 metres for this ship, compared to only
0.594 metres and 1.25 metres respectively using the fixed-ship method.

6 Existence of Steady Flow

The system of equations (3),(4) and (5) is not always solvable. In fact, for any particular ship and
channel configuration, there exists a “critical” range of Fj, for which a solution to (3),(4) and (5)
cannot be found for all X. This range normally extends either side of the linearized critical value
Fj, = 1.0. We will denote its boundaries as the “limiting Froude numbers” Fj, = and Fljm, such that
no steady hydraulic flow exists when F}, is in the range F,, < F} < Fl;"m

In this critical range, there is no admissible steady hydraulic flow for which the continuity and
Bernoulli conditions can be satisfied simultaneously. Physically, continuity past the ship cannot
be satisfied without an increase in the energy of the system. This leads to a piling up of water at
the bow of the ship and, according to hydraulic theory, a shelf of water radiating away ahead of
the ship and a trough behind [2]. This is a simplified model of the actual process, which involves
almost periodic production of solitary waves ahead of the ship (see e.g. [9]).

Like the sinkage and trim, the values of Fj, = and Ft

1im change when we allow the ship to squat.

6.1 Fixed Ship

For a fixed ship, we need only consider (3), with o set to zero, to find the limiting Froude numbers.
This method has been briefly outlined in [1].

Specifically, if we set ¢ = 0 in (3), for any given values of S and B we have a cubic equation for
[ with one, two or three real roots. This cubic has three real roots when Fj, is much greater than
or less than one, and only one real root (which is inadmissible) in the intermediate range denoted
F~ < F, < F'. The local limiting Froude numbers F~ and F'* are therefore the values of F}, for
which (3) has exactly two solutions. This occurs when the graph of the cubic (3) becomes tangent
to the B axis. The roots Fj, = F~,F* can be shown to be the solutions of

[re(-2))" (- D)-5(0-2)

Every station X, having different values of S and B, can be considered to have its own limiting
Froude numbers F~(X),F*(X). However, for a steady flow to exist, it must exist along the entire
length of the ship. Therefore, the actual limiting Froude numbers for a particular ship are given by

Fiip = min P~ (X)

Fif,y = max FH(X) (9)

At this point it is worthwhile making a few observations about the local limiting Froude numbers
for a fixed ship. Firstly, F~ and F' both move further away from unity as the blockage coefficient
S/Sp increases. This is well known. However it is not just the blockage coefficient that determines
whether a steady solution exists.



For a fixed ship, any change A(Sh) in the free surface height produces a change (w — B)A(Sh)
in A(X), the local cross-sectional area taken up by the water. Therefore, if the ship’s beam is
comparable with the width of the channel, the free surface can drop markedly with little effect on
A(X). This makes for increased stability of subcritical flow, since dropping the free surface allows
the fluid speed to increase (by Bernoulli’s equation), so that continuity can still be satisfied.

We can see explicitly the effect of beam/channel-width ratio by writing (8) in the form

=1 (ﬁ)
1—- B So
Pt = ﬁ.aﬁ (s%) (10)

for some functions G, G™.

This shows that increasing the B/w ratio while maintaining a fixed blockage coefficient S/Sy will
increase both F~ and F* by the factor 1/4/1 — g. In particular, F~ decreases with S/Sp but
increases with B /w.
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Figure 4: Local Froude number limits '~ ,FT for steady flow around a fixed ship, as a function of
blockage coefficient S/Sy and beam/channel-width ratio B/w

In Fig. 4 we have solved (8) numerically for a range of blockage coefficients and beam/channel-
width ratios. Here we see clearly how F~ and F* increase with the beam/channel-width ratio.
In fact, for sections with small blockage coefficients but large beam/channel-width ratios (e.g. a
section of small draught but large beam), F~ may be greater than one.

For a block-like ship, it is actually possible to have F'~ > 1 along the entire ship, so that F; > 1.
Hence, a fixed block-like ship of small draught and large beam can sustain steady flow, according
to hydraulic theory, at Froude numbers up to and above F}, = 1. This is, however, impossible; the
hydraulic theory is not valid in this case, as the assumptions for one-dimensional flow are violated

at a blunt bow or stern.



Because of the contrasting dependence of F~ on S and B, the critical section of the ship, where
F,;. = F~, need not necessarily be the section of largest area. It could occur anywhere along the
ship, even at the ends.

For example, a section with small blockage coefficient but large beam/channel-width ratio can have
F~ > 1, as mentioned previously. If the ship has a sharp bow or stern, it must have F'~ =1 at the
ends (because F'~ — 1 as S, B — 0). Therefore in this case the ship sustains steady flow at Froude
numbers up to Fj, = 1, when the ends dictate the beginning of unsteady flow.

One more property of (8) is that the point on the ship where F'~ is minimized will in general not
be the same point where F'* is maximized. That is, the critical section that determines F; =~ will
not always be the same critical section that determines Fljm

6.2 Block Ship Free to Squat

Constantine [2] considered an exactly block-like ship, of constant section area and waterline beam,
that is free to squat. In this case the sinkage of the ship is equal to the depression of the free
surface, and the ship always maintains a constant submerged cross-section. Because of this, the
ship’s beam has no effect on the hydrodynamics, unlike the case of a fixed ship.

Therefore the limiting Froude numbers depend only on the blockage coefficient, and can be shown
[8] to satisfy

3F§/3—F§:2(1—S£> (11)
0

6.3 General Ship Free to Squat

As is the case for a fixed ship, the limiting Froude numbers for a ship free to squat are those values
of F}, for which the graph of the cubic (3) becomes tangent to the 8 axis. This gives the relation

O O R I

The problem is now non-local, and complicated by the fact that ¢ must be determined as part of
the problem.

For simplicity we shall consider a fore-aft symmetric ship, where the maximum values of S and B
occur at the midsection. We shall also only consider hull forms for which the midsection is the
critical section. Therefore the values of S and B used in (12) are those of the midsection. The
more general case, where the critical section might occur anywhere along the ship’s length, will not
be considered here.

Because the problem is non-local, we do not use F'~ (X) and F*(X); only the overall limiting Froude
numbers Fj,  and Fl;rm have meaning in this case. As each of these quantities should be determined

separately, we shall specifically discuss F; , with the method of solution being equivalent for Fljm

im’
Solving (12) for F}, gives the limiting Froude number F),  in terms of . However, o must also
satisfy the force balance equation (4), where 3(X) is determined through the cubic (3).



These three simultaneous equations allow Fj, = to be determined by the secant method. Guessing
a value for o, (12) gives the corresponding value of Fj, which makes the midsection on the edge of
critical flow. We now know that a solution for § can be found for all X using (3). This then allows
us to calculate f(o) as in (6), and if we do this for two initial guesses oy and o1, we will find a
better estimate o9 using equation (7). In this way the limiting value of o and the corresponding

Fy;,., can be found.
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Figure 5: Limiting Froude numbers Fj

In Fig. 5 we have plotted the limiting Froude numbers Fh_m,Fl‘ZFm for a Wigley hull with varying
draught/depth ratios T'/h. This could represent ships with varying draughts in the same channel, or
the same ship in channels of varying depth. The range of T'/h was chosen high enough (T'/h > 0.5)
to ensure that the midsection is the critical section. Results were not given for 7'/h > 0.82 because,
in the subcritical case, the ship was found to touch the channel bottom before the critical Froude
number could be reached.

We can see that Fj, = for a ship allowed to squat is significantly smaller than for the same ship
held fixed. For example, when T'/h = 0.6, the fixed Wigley hull considered here can sustain steady
subcritical flow up to Fj, = 0.68, whereas the same ship allowed to squat can only sustain steady
flow up to Fj, = 0.56. The reason for this is that allowing the ship to squat effectively increases the

blockage, making subcritical low become unsteady at a lower Froude number.

The limiting Froude numbers of the block-like hull treated by Constantine [2] have also been
included for comparison. This hull has a constant cross-section which is the same as the midsection
of the Wigley hull. Because it has larger section area towards the bow and stern, its sinkage is
larger, causing the midsection flow to become unsteady at a lower Froude number. This clearly
shows that it is not just the characteristics of the critical section that determine the limiting Froude
number.

In the supercritical case, the vessel rises in the water rather than sinking. This decreases the
blockage factor, as compared to the fixed ship, meaning that Fljm for the vessel allowed to squat
is closer to unity than for the fixed ship. For example, when T'/h = 0.6, the fixed Wigley hull
considered here can only sustain steady supercritical flow for F}, > 1.94; the same ship allowed to

rise in the water will sustain steady flow for Fj > 1.47.
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The block-like hull rises in the water less than the Wigley hull, resulting in a larger blockage
coefficient. This gives a value of Ff;m that is further away from unity than for the free Wigley hull.

7 Conclusions

We have outlined a consistent nonlinear method for computing the flow around a ship that is free to
squat, travelling in a uniform channel. In the subcritical speed range, squat increases the blockage
coefficient of the ship in the channel, leading to a greater sinkage than that predicted using a
fixed-ship theory.

The discrepancy increases when the depth Froude number approaches the upper limit of steady
subcritical flow, as this is when the sinkage is large. In this case it is no longer acceptable to use a
theory in which the ship is considered fixed vertically.

Allowing the ship to squat also causes the Froude number limit of steady subcritical flow to decrease
significantly, so that critical flow begins at a lower Froude number.
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